Comptes Rendus
Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique : hommage à Pierre Coullet
Pattern universes
Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 318-331.

In this essay we explore analogies between macroscopic patterns, which result from a sequence of phase transitions/instabilities starting from a homogeneous state, and similar phenomena in cosmology, where a sequence of phase transitions in the early universe is believed to have separated the fundamental forces from each other, and also shaped the structure and distribution of matter in the universe. We discuss three distinct aspects of this analogy: (i) Defects and topological charges in macroscopic patterns are analogous to spins and charges of quarks and leptons; (ii) Defects in generic 3+1 stripe patterns carry an energy density that accounts for phenomena that are currently attributed to dark matter; (iii) Space-time patterns of interacting nonlinear waves display behaviors reminiscent of quantum phenomena including inflation, entanglement and dark energy.

Dans cet article, nous explorons plusieurs analogies entre la formation de structures périodiques macroscopiques, qui résultent de la succession de transitions de phase ou d'instabilités, et certains phénomènes similaires en cosmologie, où une suite de transitions de phase dans l'univers primordial aurait donné lieu à la séparation des forces fondamentales et à la formation des structures. Nous considérons trois analogies différentes : (i) les défauts et charges topologiques dans les structures macroscopiques sont analogues aux spins et charges des quarks et des leptons ; (ii) les défauts dans les structures périodiques génériques (en dimensions 3+1) ont une densité d'énergie qui donne lieu à certains phénomènes attribués à la présence de matière noire ; (iii) les structures spatio-temporelles résultant de l'interaction d'ondes non linéaires ont des comportements qui rappellent certains phénomènes quantiques, tels que l'inflation cosmique, l'enchevêtrement quantique et l'énergie noire.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2019.03.004
Keywords: Pattern formation, Cosmology, Phase transitions
Mot clés : Formation de motifs, Cosmologie, Transition de phase

Alan C. Newell 1; Shankar C. Venkataramani 1

1 Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
@article{CRMECA_2019__347_4_318_0,
     author = {Alan C. Newell and Shankar C. Venkataramani},
     title = {Pattern universes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {318--331},
     publisher = {Elsevier},
     volume = {347},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crme.2019.03.004},
     language = {en},
}
TY  - JOUR
AU  - Alan C. Newell
AU  - Shankar C. Venkataramani
TI  - Pattern universes
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 318
EP  - 331
VL  - 347
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2019.03.004
LA  - en
ID  - CRMECA_2019__347_4_318_0
ER  - 
%0 Journal Article
%A Alan C. Newell
%A Shankar C. Venkataramani
%T Pattern universes
%J Comptes Rendus. Mécanique
%D 2019
%P 318-331
%V 347
%N 4
%I Elsevier
%R 10.1016/j.crme.2019.03.004
%G en
%F CRMECA_2019__347_4_318_0
Alan C. Newell; Shankar C. Venkataramani. Pattern universes. Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 318-331. doi : 10.1016/j.crme.2019.03.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.004/

[1] P. de Bernardis; P.A.R. Ade; J.J. Bock; J.R. Bond; J. Borrill; A. Boscaleri; K. Coble; B.P. Crill; G. De Gasperis; P.C. Farese; P.G. Ferreira; K. Ganga; M. Giacometti; E. Hivon; V.V. Hristov; A. Iacoangeli; A.H. Jaffe; A.E. Lange; L. Martinis; S. Masi; P.V. Mason; P.D. Mauskopf; A. Melchiorri; L. Miglio; T. Montroy; C.B. Netterfield; E. Pascale; F. Piacentini; D. Pogosyan; S. Prunet; S. Rao; G. Romeo; J.E. Ruhl; F. Scaramuzzi; D. Sforna; N. Vittorio A flat universe from high-resolution maps of the cosmic microwave background radiation, Nature, Volume 404 (2000), p. 955

[2] G. Hinshaw; D. Larson; E. Komatsu; D.N. Spergel; C.L. Bennett; J. Dunkley; M.R. Nolta; M. Halpern; R.S. Hill; N. Odegard; L. Page; K.M. Smith; J.L. Weiland; B. Gold; N. Jarosik; A. Kogut; M. Limon; S.S. Meyer; G.S. Tucker; E. Wollack; E.L. Wright Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. Ser., Volume 208 (2013) no. 2, p. 19

[3] P.J.E. Peebles; B. Ratra The cosmological constant and dark energy, Rev. Mod. Phys., Volume 75 ( April 2003 ), pp. 559-606

[4] V.C. Rubin; W.K. Ford Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J., Volume 159 ( February 1970 ), p. 379

[5] A.C. Newell Pattern quarks and leptons, Appl. Anal., Volume 91 (2012) no. 2, pp. 213-223

[6] A.C. Newell ‘Quarks’ and ‘leptons’ in three dimensional patterns, Eur. J. Mech. B, Fluids, Volume 47 (2014), pp. 39-47 (Enok Palm Memorial Volume)

[7] A.C. Newell; S.C. Venkataramani Elastic sheets, phase surfaces, and pattern universes, Stud. Appl. Math., Volume 139 (2018) no. 2, pp. 322-368

[8] A.C. Newell; T. Passot; C. Bowman; N. Ercolani; R. Indik Defects are weak and self-dual solutions of the Cross–Newell phase diffusion equation for natural patterns, Physica D, Volume 97 (1996) no. 1, pp. 185-205

[9] G.R. Blumenthal; S.M. Faber; J.R. Primack; M.J. Rees Formation of galaxies and large-scale structure with cold dark matter, Nature, Volume 311 (1984) no. 5986, pp. 517-525

[10] M. Davis; G. Efstathiou; C.S. Frenk; S.D.M. White The evolution of large-scale structure in a universe dominated by cold dark matter, Astrophys. J., Volume 292 (1985), pp. 371-394

[11] F. Zwicky On the masses of nebulae and of clusters of nebulae, Astrophys. J., Volume 86 ( October 1937 ), p. 217

[12] V.C. Rubin; W.K. Ford; N. Thonnard Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4 kpc) to UGC 2885 (R=122 kpc), Astrophys. J., Volume 238 ( June 1980 ), pp. 471-487

[13] V.C. Rubin; N. Thonnard; W.K. Ford Extended rotation curves of high-luminosity spiral galaxies. IV – Systematic dynamical properties, SA through SC, Astrophys. J. Lett., Volume 225 ( November 1978 ), p. L107-L111

[14] T.S. van Albada; J.N. Bahcall; K. Begeman; R. Sancisi Distribution of dark matter in the spiral galaxy NGC 3198, Astrophys. J., Volume 295 ( August 1985 ), pp. 305-313

[15] M. Milgrom A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J., Volume 270 ( July 1983 ), pp. 365-370

[16] F.J. de Urries; J. Julve Ostrogradski formalism for higher-derivative scalar field theories, J. Phys. A, Math. Gen., Volume 31 (1998) no. 33, p. 6949

[17] C.W. Misner; K.S. Thorne; J.A. Wheeler Gravitation, W.H. Freeman and Co., San Francisco, CA, USA, 1973

[18] J. Binney; S. Tremaine Galactic Dynamics, Princeton University Press, 2008

[19] E.P. Verlinde Emergent gravity and the dark universe, SciPost Phys., Volume 2 (2017)

[20] J.F. Navarro; M. Steinmetz The core density of dark matter halos: a critical challenge to the ΛCDM paradigm?, Astrophys. J., Volume 528 (2000) no. 2, p. 607

[21] D.H. Weinberg; J.S. Bullock; F. Governato; R. Kuzio de Naray; A.H.G. Peter Cold dark matter: controversies on small scales, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 40, pp. 12249-12255

[22] G. 't Hooft Equivalence relations between deterministic and quantum mechanical systems, J. Stat. Phys., Volume 53 (1988) no. 1, pp. 323-344

[23] V.E. Zakharov; V.S. L'vov; G. Falkovich Kolmogorov Spectra of Turbulence I: Wave Turbulence, Springer Science & Business Media, 2012

[24] A.C. Newell; B. Rumpf Wave turbulence, Annu. Rev. Fluid Mech., Volume 43 (2011), pp. 59-78

[25] A.C. Newell Envelope equations, Clarkson Coll. Tech., Potsdam, N.Y., 1972 (Lectures in Appl. Math.), Volume vol. 15, Amer. Math. Soc., Providence, RI, USA (1974), pp. 157-163

[26] T. Passot; A.C. Newell Towards a universal theory for natural patterns, Physica D, Volume 74 (1994) no. 3–4, pp. 301-352

Cited by Sources:

Comments - Policy