In this essay we explore analogies between macroscopic patterns, which result from a sequence of phase transitions/instabilities starting from a homogeneous state, and similar phenomena in cosmology, where a sequence of phase transitions in the early universe is believed to have separated the fundamental forces from each other, and also shaped the structure and distribution of matter in the universe. We discuss three distinct aspects of this analogy: (i) Defects and topological charges in macroscopic patterns are analogous to spins and charges of quarks and leptons; (ii) Defects in generic 3+1 stripe patterns carry an energy density that accounts for phenomena that are currently attributed to dark matter; (iii) Space-time patterns of interacting nonlinear waves display behaviors reminiscent of quantum phenomena including inflation, entanglement and dark energy.
Dans cet article, nous explorons plusieurs analogies entre la formation de structures périodiques macroscopiques, qui résultent de la succession de transitions de phase ou d'instabilités, et certains phénomènes similaires en cosmologie, où une suite de transitions de phase dans l'univers primordial aurait donné lieu à la séparation des forces fondamentales et à la formation des structures. Nous considérons trois analogies différentes : (i) les défauts et charges topologiques dans les structures macroscopiques sont analogues aux spins et charges des quarks et des leptons ; (ii) les défauts dans les structures périodiques génériques (en dimensions ) ont une densité d'énergie qui donne lieu à certains phénomènes attribués à la présence de matière noire ; (iii) les structures spatio-temporelles résultant de l'interaction d'ondes non linéaires ont des comportements qui rappellent certains phénomènes quantiques, tels que l'inflation cosmique, l'enchevêtrement quantique et l'énergie noire.
Accepted:
Published online:
Mots-clés : Formation de motifs, Cosmologie, Transition de phase
Alan C. Newell 1; Shankar C. Venkataramani 1
@article{CRMECA_2019__347_4_318_0, author = {Alan C. Newell and Shankar C. Venkataramani}, title = {Pattern universes}, journal = {Comptes Rendus. M\'ecanique}, pages = {318--331}, publisher = {Elsevier}, volume = {347}, number = {4}, year = {2019}, doi = {10.1016/j.crme.2019.03.004}, language = {en}, }
Alan C. Newell; Shankar C. Venkataramani. Pattern universes. Comptes Rendus. Mécanique, Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique: hommage à Pierre Coullet, Volume 347 (2019) no. 4, pp. 318-331. doi : 10.1016/j.crme.2019.03.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.004/
[1] A flat universe from high-resolution maps of the cosmic microwave background radiation, Nature, Volume 404 (2000), p. 955
[2] Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. Ser., Volume 208 (2013) no. 2, p. 19
[3] The cosmological constant and dark energy, Rev. Mod. Phys., Volume 75 ( April 2003 ), pp. 559-606
[4] Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J., Volume 159 ( February 1970 ), p. 379
[5] Pattern quarks and leptons, Appl. Anal., Volume 91 (2012) no. 2, pp. 213-223
[6] ‘Quarks’ and ‘leptons’ in three dimensional patterns, Eur. J. Mech. B, Fluids, Volume 47 (2014), pp. 39-47 (Enok Palm Memorial Volume)
[7] Elastic sheets, phase surfaces, and pattern universes, Stud. Appl. Math., Volume 139 (2018) no. 2, pp. 322-368
[8] Defects are weak and self-dual solutions of the Cross–Newell phase diffusion equation for natural patterns, Physica D, Volume 97 (1996) no. 1, pp. 185-205
[9] Formation of galaxies and large-scale structure with cold dark matter, Nature, Volume 311 (1984) no. 5986, pp. 517-525
[10] The evolution of large-scale structure in a universe dominated by cold dark matter, Astrophys. J., Volume 292 (1985), pp. 371-394
[11] On the masses of nebulae and of clusters of nebulae, Astrophys. J., Volume 86 ( October 1937 ), p. 217
[12] Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 ( kpc) to UGC 2885 ( kpc), Astrophys. J., Volume 238 ( June 1980 ), pp. 471-487
[13] Extended rotation curves of high-luminosity spiral galaxies. IV – Systematic dynamical properties, SA through SC, Astrophys. J. Lett., Volume 225 ( November 1978 ), p. L107-L111
[14] Distribution of dark matter in the spiral galaxy NGC 3198, Astrophys. J., Volume 295 ( August 1985 ), pp. 305-313
[15] A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J., Volume 270 ( July 1983 ), pp. 365-370
[16] Ostrogradski formalism for higher-derivative scalar field theories, J. Phys. A, Math. Gen., Volume 31 (1998) no. 33, p. 6949
[17] Gravitation, W.H. Freeman and Co., San Francisco, CA, USA, 1973
[18] Galactic Dynamics, Princeton University Press, 2008
[19] Emergent gravity and the dark universe, SciPost Phys., Volume 2 (2017)
[20] The core density of dark matter halos: a critical challenge to the ΛCDM paradigm?, Astrophys. J., Volume 528 (2000) no. 2, p. 607
[21] Cold dark matter: controversies on small scales, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 40, pp. 12249-12255
[22] Equivalence relations between deterministic and quantum mechanical systems, J. Stat. Phys., Volume 53 (1988) no. 1, pp. 323-344
[23] Kolmogorov Spectra of Turbulence I: Wave Turbulence, Springer Science & Business Media, 2012
[24] Wave turbulence, Annu. Rev. Fluid Mech., Volume 43 (2011), pp. 59-78
[25] Envelope equations, Clarkson Coll. Tech., Potsdam, N.Y., 1972 (Lectures in Appl. Math.), Volume vol. 15, Amer. Math. Soc., Providence, RI, USA (1974), pp. 157-163
[26] Towards a universal theory for natural patterns, Physica D, Volume 74 (1994) no. 3–4, pp. 301-352
Cited by Sources:
Comments - Policy