[Lʼaccélération de lʼexpansion de lʼUnivers du point de vue de lʼobservation]
La découverte de lʼaccélération cosmique est lʼun des développements les plus importants de la cosmologie moderne. Lʼobservation, il y a 13 ans, que les supernovae de type Ia étaient moins lumineuses quʼattendu pour un univers en phase de décélération, et une série dʼobservations indépendantes mettant en jeu des galaxies, des amas de galaxies et le rayonnement de fond cosmique, pointent toutes dans la même direction : nous semblons être dans un univers spatialement plat qui subit une phase dʼaccélération de son expansion. Dans cet article, nous passons en revue les différentes observations, la plupart obtenues au cours des 10 dernières années, et les améliorations quʼapporteront les projets actuellement en phase de prise de données ou encore en préparation.
The discovery of cosmic acceleration is one of the most important developments in modern cosmology. The observation, thirteen years ago, that type Ia supernovae appear dimmer that they would have been in a decelerating universe followed by a series of independent observations involving galaxies and cluster of galaxies as well as the cosmic microwave background, all point in the same direction: we seem to be living in a flat universe whose expansion is currently undergoing an acceleration phase. In this article, we review the various observational evidences, most of them gathered in the last decade, and the improvements expected from projects currently collecting data or in preparation.
Mot clés : Cosmologie moderne, Supernovae de type Ia, Oscillations baryoniques, Lentilles gravitationnelles, Amas de galaxies, Energie noire
Pierre Astier 1 ; Reynald Pain 1
@article{CRPHYS_2012__13_6-7_521_0, author = {Pierre Astier and Reynald Pain}, title = {Observational evidence of the accelerated expansion of the universe}, journal = {Comptes Rendus. Physique}, pages = {521--538}, publisher = {Elsevier}, volume = {13}, number = {6-7}, year = {2012}, doi = {10.1016/j.crhy.2012.04.009}, language = {en}, }
Pierre Astier; Reynald Pain. Observational evidence of the accelerated expansion of the universe. Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 521-538. doi : 10.1016/j.crhy.2012.04.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.04.009/
[1] The ability of the 200-INCH telescope to discriminate between selected world models, Astrophys. J., Volume 133 ( March 1961 ), p. 355
[2] et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., Volume 116 ( September 1998 ), pp. 1009-1038
[3] et al. Measurements of omega and lambda from 42 high-redshift supernovae, Astrophys. J., Volume 517 ( June 1999 ), pp. 565-586
[4] An accelerating universe, Nature, Volume 257 ( October 1975 ), pp. 454-457
[5] Tests of cosmological models constrained by inflation, Astrophys. J., Volume 284 ( September 1984 ), pp. 439-444
[6] Galaxy correlations on large scales, Mon. Not. Roy. Astron. Soc., Volume 242 ( January 1990 ), p. 43P-47P
[7] The cosmological constant and cold dark matter, Nature, Volume 348 ( December 1990 ), pp. 705-707
[8] The Early Universe, Front. Phys., Addison–Wesley, 1990
[9] Big-bang nucleosynthesis revisited, Astrophys. J., Volume 179 ( January 1973 ), pp. 343-360
[10] The baryon content of galaxy clusters: a challenge to cosmological orthodoxy, Nature, Volume 366 ( December 1993 ), pp. 429-433
[11] A measurement of the mass density of the universe, Astrophys. J., Volume 307 ( August 1986 ), p. L1-L4
[12] Omega and the initial fluctuations from velocity and density fields, Astrophys. J., Volume 405 ( March 1993 ), pp. 437-448
[13] The phenomenological approach to modeling the dark energy, C. R. Physique, Volume 13 (2012), pp. 539-565 (in this issue) | DOI
[14] Everything you always wanted to know about the cosmological constant (but were afraid to ask), C. R. Physique, Volume 13 (2012), pp. 566-665 (in this issue) | DOI
[15] Establishing homogeneity of the universe in the shadow of dark energy, C. R. Physique, Volume 13 (2012), pp. 682-718 (in this issue) | DOI
[16] Galileons in the sky, C. R. Physique, Volume 13 (2012), pp. 666-681 (in this issue) | DOI
[17] et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation, Nature, Volume 404 ( April 2000 ), pp. 955-959
[18] et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, January 2005 | arXiv
[19] et al. Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology, Astrophys. J. Supp., Volume 170 ( June 2007 ), pp. 377-408
[20] Large-scale galaxy correlations as a test for dark energy, Astron. Astrophys., Volume 449 ( April 2006 ), pp. 925-928
[21] et al. SNLS3: constraints on dark energy combining the supernova legacy survey three-year data with other probes, Astrophys. J., Volume 737 ( August 2011 ), p. 102
[22] Cosmological Physics, Cambridge University Press, 1999
[23] Über die möglichkeit einer welt mit konstanter negativer krümmung des raumes, Z. Phys. Hadrons Nucl., Volume 21 (1924), pp. 326-332 | DOI
[24] Dark energy and the accelerating universe, Annu. Rev. Astron. Astrophys., Volume 46 ( September 2008 ), pp. 385-432
[25] The cosmological constant, Annu. Rev. Astron. Astrophys., Volume 30 (1992), pp. 499-542
[26] On the definition of distance in general relativity, Philos. Mag., Volume 15 (1933), p. 761
[27] et al. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument, Astrophys. J., Volume 420 ( January 1994 ), pp. 439-444
[28] The spectral results of the far-infrared absolute spectrophotometer instrument on COBE, Astrophys. J., Volume 581 ( December 2002 ), pp. 817-822
[29] The effects of cosmic microwave background (CMB) temperature uncertainties on cosmological parameter estimation, J. Cosmol. Astropart. Phys., Volume 3 ( March 2008 ), p. 25
[30] et al. A measurement of the damping tail of the cosmic microwave background power spectrum with the south pole telescope, Astrophys. J., Volume 743 ( December 2011 ), p. 28
[31] CMBEASY: an object oriented code for the cosmic microwave background, J. Cosmol. Astropart. Phys., Volume 10 ( October 2005 ) no. 11
[32] et al. The WiggleZ dark energy survey: mapping the distance–redshift relation with baryon acoustic oscillations, Mon. Not. Roy. Astron. Soc. ( October 2011 ), p. 1598
[33] A. Albrecht, G. Bernstein, R. Cahn, et al., Report of the dark energy task force, arXiv astrophysics e-prints, September 2006.
[34] J.A. Peacock, P. Schneider, G. Efstathiou, et al., ESA-ESO Working Group on “Fundamental Cosmology”, Technical report, October 2006.
[35] et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Supp., Volume 192 ( February 2011 ), p. 18
[36] Dark energy probes in light of the CMB (S.C. Wolff; T.R. Lauer, eds.), Observing Dark Energy, Astronom. Soc. Pac. Conf. Ser., vol. 339, August 2005 , p. 215
[37] Forecasting cosmic parameter errors from microwave background anisotropy experiments, Mon. Not. Roy. Astron. Soc., Volume 291 ( November 1997 ), p. L33-L41
[38] et al. A 3% solution: determination of the Hubble constant with the Hubble space telescope and wide field camera 3, Astrophys. J., Volume 730 ( April 2011 ), p. 119
[39] Secondary anisotropies of the CMB, Rep. Progr. Phys., Volume 71 ( June 2008 ) no. 6, p. 066902
[40] Gravitational lensing effect on cosmic microwave background anisotropies: a power spectrum approach, Astrophys. J., Volume 463 ( May 1996 ) no. 1
[41] Gravitational lensing of cosmic microwave background anisotropies and cosmological parameter estimation, Mon. Not. Roy. Astron. Soc., Volume 302 ( February 1999 ), pp. 735-747
[42] Weak lensing of the CMB: A harmonic approach, Phys. Rev. D, Volume 62 ( August 2000 ) no. 4, p. 043007
[43] et al. Detection of the power spectrum of cosmic microwave background lensing by the Atacama cosmology telescope, Phys. Rev. Lett., Volume 107 ( July 2011 ) no. 2, p. 021301
[44] et al. Evidence for dark energy from the cosmic microwave background alone using the Atacama cosmology telescope lensing measurements, Phys. Rev. Lett., Volume 107 ( July 2011 ) no. 2, p. 021302
[45] Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J., Volume 147 ( January 1967 ), p. 73
[46] Doppler peaks from cosmic texture, Phys. Rev. Lett., Volume 75 ( October 1995 ), pp. 2642-2645
[47] R. Scranton, A.J. Connolly, R.C. Nichol, et al., Physical evidence for dark energy, arXiv astrophysics e-prints, July 2003.
[48] et al. Combined analysis of the integrated Sachs–Wolfe effect and cosmological implications, Phys. Rev. D, Volume 77 ( June 2008 ) no. 12, p. 123520
[49] Correlation of CMB with large-scale structure. I. Integrated Sachs–Wolfe tomography and cosmological implications, Phys. Rev. D, Volume 78 ( August 2008 ) no. 4, p. 043519
[50] et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample, Mon. Not. Roy. Astron. Soc., Volume 401 ( February 2010 ), pp. 2148-2168
[51] R. Amanullah, C. Lidman, D. Rubin, et al., Spectra and light curves of six type Ia supernovae at 0.511 and the Union2 compilation, arXiv e-prints, April 2010.
[52] R. Laureijs, J. Amiaux, S. Arduini, et al., Euclid definition study report, arXiv e-prints, October 2011.
[53] Planck priors for dark energy surveys, Phys. Rev. D, Volume 78 ( October 2008 ) no. 8, p. 083529
[54] A Relation between distance and radial velocity among Extra-Galactic nebulae, Proc. Natl. Acad. Sci., Volume 15 ( March 1929 ), pp. 168-173
[55] Another evolutionary correction to the luminosity of giant galaxies, Astrophys. J., Volume 202 ( December 1975 ), p. L113-L117
[56] Absolute magnitudes of supernovae, Astron. J., Volume 73 ( December 1968 ), pp. 1021-1024
[57] Distances to extragalactic supernovae, Astrophys. J., Volume 193 ( October 1974 ), pp. 27-36
[58] Determining q0 from supernovae, Astrophys. J., Volume 214 ( May 1977 ), p. L5
[59] The classification of supernovae, Astrophys. Space Sci., Volume 202 ( April 1993 ), pp. 215-236
[60] Optical spectra of supernovae, Annu. Rev. Astron. Astrophys., Volume 35 (1997), pp. 309-355
[61] Type Ia supernovae as stellar endpoints and cosmological tools, Nat. Commun., Volume 2 ( June 2011 )
[62] et al. The Hubble diagram of the Calan/Tololo type IA supernovae and the value of HO, Astron. J., Volume 112 ( December 1996 ), p. 2398
[63] B. Leibundgut, Light curves of supernovae type, I, PhD thesis, Univ. Basel, 1988, 137 pp.
[64] et al. The Carnegie supernova project: First photometry data release of low-redshift type Ia supernovae, Astron. J., Volume 139 ( February 2010 ), pp. 519-539
[65] et al. BVRI light curves for 29 type IA supernovae, Astron. J., Volume 112 ( December 1996 ), p. 2408
[66] Photometric classification and basic parameters of type I supernovae, Soviet Astron., Volume 28 ( December 1984 ), p. 658
[67] The absolute magnitudes of type Ia supernovae, Astrophys. J., Volume 413 ( August 1993 ), p. L105-L108
[68] Search for supernovae in distant clusters of galaxies, The Messenger, Volume 47 ( March 1987 ), pp. 46-49
[69] The discovery of a type IA supernova at a redshift of 0.31, Nature, Volume 339 ( June 1989 ), pp. 523-525
[70] A method for optimal image subtraction, Astrophys. J., Volume 503 ( August 1998 ), p. 325
[71] et al. New constraints on , , and w from an independent set of 11 high-redshift supernovae observed with the Hubble space telescope, Astrophys. J., Volume 598 ( November 2003 ), pp. 102-137
[72] et al. Type Ia supernova discoveries at from the Hubble space telescope: evidence for past deceleration and constraints on dark energy evolution, Astrophys. J., Volume 607 ( June 2004 ), pp. 665-687
[73] et al. New Hubble space telescope discoveries of type Ia supernovae at : narrowing constraints on the early behavior of dark energy, Astrophys. J., Volume 659 ( April 2007 ), pp. 98-121
[74] et al. Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey, Astrophys. J. Supp., Volume 1 ( January 2011 ), p. 192
[75] et al. The Hubble space telescope cluster supernova survey. V. Improving the dark-energy constraints above and building an early-type-hosted supernova sample, Astrophys. J., Volume 746 ( February 2012 ), p. 85
[76] et al. The supernova legacy survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints, Astron. Astrophys. A, Volume 523 ( November 2010 ), p. A7
[77] et al. First-year Sloan digital sky survey-II supernova results: Hubble diagram and cosmological parameters, Astrophys. J. Supp., Volume 185 ( November 2009 ), pp. 32-84
[78] et al. The supernova legacy survey: measurement of , and w from the first year data set, Astron. Astrophys., Volume 447 ( February 2006 ), pp. 31-48
[79] et al. Observational constraints on the nature of dark energy: First cosmological results from the ESSENCE supernova survey, Astrophys. J., Volume 666 ( September 2007 ), pp. 694-715
[80] Measuring cosmological parameters with galaxy surveys, Phys. Rev. Lett., Volume 79 ( November 1997 ), pp. 3806-3809
[81] et al. The 2dF galaxy redshift survey: power-spectrum analysis of the final data set and cosmological implications, Mon. Not. Roy. Astron. Soc., Volume 362 ( September 2005 ), pp. 505-534
[82] et al. The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data, Mon. Not. Roy. Astron. Soc., Volume 378 ( July 2007 ), pp. 852-872
[83] et al. The WiggleZ dark energy survey: mapping the distance–redshift relation with baryon acoustic oscillations, Mon. Not. Roy. Astron. Soc., Volume 418 ( December 2011 ), pp. 1707-1724
[84] Improving cosmological distance measurements by reconstruction of the baryon acoustic peak, Astrophys. J., Volume 664 ( August 2007 ), pp. 675-679
[85] N. Padmanabhan, X. Xu, D.J. Eisenstein, et al., A 2% distance to by reconstructing baryon acoustic oscillations. I. Methods and application to the Sloan digital sky survey, arXiv e-prints, January 2012.
[86] Clustering in real space and in redshift space, Mon. Not. Roy. Astron. Soc., Volume 227 ( July 1987 ), pp. 1-21
[87] Linear redshift distortions and power in the IRAS Point Source Catalog Redshift Survey, Mon. Not. Roy. Astron. Soc., Volume 317 ( September 2000 ), p. L23-L27
[88] A.N. Taylor, W.E. Ballinger, A.F. Heavens, H. Tadros, Application of data compression methods to the redshift-space distortions of the PSCz galaxy catalogue, arXiv astrophysics e-prints, July 2000.
[89] The Durham/UKST Galaxy Redshift Survey. VII. Redshift-space distortions in the power spectrum, Mon. Not. Roy. Astron. Soc., Volume 321 ( March 2001 ), pp. 497-501
[90] et al. A measurement of the cosmological mass density from clustering in the 2dF Galaxy redshift survey, Nature, Volume 410 ( March 2001 ), pp. 169-173
[91] et al. The 2dF-SDSS LRG and QSO Survey: the LRG 2-point correlation function and redshift-space distortions, Mon. Not. Roy. Astron. Soc., Volume 381 ( October 2007 ), pp. 573-588
[92] et al. A test of the nature of cosmic acceleration using galaxy redshift distortions, Nature, Volume 451 ( January 2008 ), pp. 541-544
[93] et al. The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift , Mon. Not. Roy. Astron. Soc., Volume 415 ( August 2011 ), pp. 2876-2891
[94] Spectrophotometry of faint cluster galaxies and the Hubble diagram – an approach to cosmology, Astrophys. J., Volume 195 ( January 1975 ), pp. 255-268
[95] The extension of the Hubble diagram. II. New redshifts and photometry of very distant galaxy clusters – First indication of a deviation of the Hubble diagram from a straight line, Astrophys. J., Volume 221 ( April 1978 ), pp. 383-394
[96] The extension of the Hubble diagram. I. New redshifts and BVR photometry of remote cluster galaxies, and an improved richness correction, Astrophys. J., Volume 205 ( May 1976 ), pp. 688-695
[97] The X-ray cluster normalization of the matter power spectrum, Astrophys. J., Volume 691 ( February 2009 ), pp. 1307-1321
[98] Precision cluster mass determination from weak lensing, Mon. Not. Roy. Astron. Soc., Volume 405 ( July 2010 ), pp. 2078-2102
[99] Completeness in weak-lensing searches for clusters, Astrophys. J., Volume 575 ( August 2002 ), pp. 640-649
[100] Effects of distant large-scale structure on the precision of weak lensing mass measurements, Mon. Not. Roy. Astron. Soc., Volume 412 ( April 2011 ), pp. 2095-2103
[101] The structural and scaling properties of nearby galaxy clusters. II. The M–T relation, Astron. Astrophys., Volume 441 ( October 2005 ), pp. 893-903
[102] Cosmology with the Sunyaev–Zelʼdovich effect, Annu. Rev. Astron. Astrophys., Volume 40 (2002), pp. 643-680
[103] et al. A Subaru weak-lensing survey. I. Cluster candidates and spectroscopic verification, Astrophys. J., Volume 669 ( November 2007 ), pp. 714-728
[104] et al. Chandra cluster cosmology project III: Cosmological parameter constraints, Astrophys. J., Volume 692 ( February 2009 ), pp. 1060-1074
[105] The observed growth of massive galaxy clusters – I. Statistical methods and cosmological constraints, Mon. Not. Roy. Astron. Soc., Volume 406 ( August 2010 ), pp. 1759-1772
[106] R.A. Burenin, A.A. Vikhlinin, Cosmological parameters constraints from galaxy cluster mass function measurements in combination with other cosmological data, arXiv e-prints, February 2012.
[107] Cosmological parameters from observations of galaxy clusters, Annu. Rev. Astron. Astrophys., Volume 49 ( September 2011 ), pp. 409-470
[108] Probing the universe with weak lensing, Annu. Rev. Astron. Astrophys., Volume 37 (1999), pp. 127-189
[109] Weak gravitational lensing, Phys. Rep., Volume 340 ( January 2001 ), pp. 291-472
[110] Weak gravitational lensing by large-scale structure, Annu. Rev. Astron. Astrophys., Volume 41 (2003), pp. 645-668
[111] Power spectrum tomography with weak lensing, Astrophys. J., Volume 522 ( September 1999 ), p. L21-L24
[112] Optimal surveys for weak-lensing tomography, Mon. Not. Roy. Astron. Soc., Volume 381 ( November 2007 ), pp. 1018-1026
[113] et al. Detection of correlated galaxy ellipticities from CFHT data: first evidence for gravitational lensing by large-scale structures, Astron. Astrophys., Volume 358 ( June 2000 ), pp. 30-44
[114] Detection of weak gravitational lensing by large-scale structure, Mon. Not. Roy. Astron. Soc., Volume 318 ( October 2000 ), pp. 625-640
[115] Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales, Nature, Volume 405 ( May 2000 ), pp. 143-148
[116] et al. COSMOS: Hubble space telescope observations, Astrophys. J. Supp., Volume 172 ( September 2007 ), pp. 38-45
[117] et al. Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS, Astron. Astrophys., Volume 516 ( June 2010 ), p. A63
[118] et al. Very weak lensing in the CFHTLS wide: cosmology from cosmic shear in the linear regime, Astron. Astrophys., Volume 479 ( February 2008 ), pp. 9-25
[119] Age estimates of globular clusters in the milky way: Constraints on cosmology, Science, Volume 299 ( January 2003 ), pp. 65-70
[120] et al. Five-year Wilkinson microwave anisotropy probe observations: likelihoods and parameters from the WMAP data, Astrophys. J. Supp., Volume 180 ( February 2009 ), pp. 306-329
[121] et al. Improved cosmological constraints from new, old, and combined supernova data sets, Astrophys. J., Volume 686 ( October 2008 ), pp. 749-778
[122] et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample, Mon. Not. Roy. Astron. Soc., Volume 401 ( February 2010 ), pp. 2148-2168
[123] et al. Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters, Mon. Not. Roy. Astron. Soc., Volume 383 ( January 2008 ), pp. 879-896
[124] Accelerating universes with scaling dark matter, Internat. J. Modern Phys. D, Volume 10 (2001), pp. 213-223
[125] J.P. Bernstein, R. Kessler, S. Kuhlmann, et al., Supernova simulations and strategies for the dark energy survey, arXiv e-prints, November 2011.
[126] Dark energy constraints from a space-based supernova survey, Astron. Astrophys., Volume 525 ( January 2011 ), p. A7
[127] Cosmic shears should not be measured in conventional ways, Mon. Not. Roy. Astron. Soc., Volume 414 ( June 2011 ), pp. 1047-1058
[128] Optimal point spread function modeling for weak lensing: complexity and sparsity, Astron. Astrophys., Volume 500 ( June 2009 ), pp. 647-655
[129] S. Bridle, S.T. Balan, M. Bethge, et al., Results of the GREAT08 challenge: An image analysis competition for cosmological lensing, arXiv e-prints, August 2009.
[130] Systematic bias in cosmic shear: extending the Fisher matrix, Mon. Not. Roy. Astron. Soc., Volume 391 ( November 2008 ), pp. 228-236
[131] et al. Simulations of Wide-Field weak lensing surveys. I. Basic statistics and non-Gaussian effects, Astrophys. J., Volume 701 ( August 2009 ), pp. 945-954
[132] Quantifying the effect of baryon physics on weak lensing tomography, Mon. Not. Roy. Astron. Soc., Volume 417 ( November 2011 ), pp. 2020-2035
[133] Shear and magnification: cosmic complementarity, Mon. Not. Roy. Astron. Soc., Volume 401 ( January 2010 ), pp. 2093-2100
[134] L. Anderson, E. Aubourg, S. Bailey, et al., The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample, arXiv e-prints, March 2012.
[135] et al. Simulations of BAO reconstruction with a quasar Ly-α survey, Astron. Astrophys., Volume 534 ( October 2011 ), p. A135
[136] D. Schlegel, F. Abdalla, T. Abraham, et al., The BigBOSS experiment, arXiv e-prints, June 2011.
Cité par Sources :
Commentaires - Politique