General mechanical considerations provide an upper bound for the take-off velocity of any jumper, animate or inanimate, rigid or soft body, animal or vegetal. The take-off velocity is driven by the ratio of released energy to body mass. Further, the mean reaction force on a rigid platform during push-off is inversely proportional to the characteristic size of the jumper. These general considerations are illustrated in the context of Alexander's jumper model, which can be solved exactly and which shows an excellent agreement with the mechanical results.
Des considérations mécaniques générales fournissent une limite supérieure pour la vitesse de décollage de tout sauteur, qu'il soit animé ou inanimé, qu'il soit de corps rigide ou mou, animal ou végétal. La vitesse de décollage est déterminée par le rapport entre l'énergie libérée et la masse corporelle. De plus, la force de réaction moyenne sur un support rigide lors du push-off est inversement proportionnelle à la taille caractéristique du sauteur. Ces considérations générales sont illustrées à l'aide du modèle de saut d'Alexander, qui peut être résolu exactement et qui offre un excellent accord avec les résultats mécaniques.
Accepted:
Published online:
Mots-clés : Saut, Vitesse de décollage, Locomotion, Biomécanique
Mary Carmen Jarur 1; Jacques Dumais 2; Sergio Rica 3
@article{CRMECA_2019__347_4_305_0, author = {Mary Carmen Jarur and Jacques Dumais and Sergio Rica}, title = {Limiting speed for jumping}, journal = {Comptes Rendus. M\'ecanique}, pages = {305--317}, publisher = {Elsevier}, volume = {347}, number = {4}, year = {2019}, doi = {10.1016/j.crme.2019.03.005}, language = {en}, }
Mary Carmen Jarur; Jacques Dumais; Sergio Rica. Limiting speed for jumping. Comptes Rendus. Mécanique, Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique: hommage à Pierre Coullet, Volume 347 (2019) no. 4, pp. 305-317. doi : 10.1016/j.crme.2019.03.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.005/
[1] De motu animalium (1680–1681), Bernabo, Rome, 1680
[2] Surface tension propulsion of fungal spores, J. Exp. Biol., Volume 212 (2009), pp. 2835-2843
[3] Ballistic seed projection in two herbaceous species, Am. J. Bot., Volume 87 (2000), pp. 1257-1264
[4] et al. The principles of cascading power limits in small, fast biological and engineered systems, Science, Volume 360 (2018)
[5] Take-off speed in jumping mantises depends on body size and a power-limited mechanism, J. Exp. Biol., Volume 219 (2016), pp. 2127-2136
[6] A dynamic optimization solution for vertical jumping in three dimensions, Comput. Methods Biomech. Biomed. Eng., Volume 2 (1999), pp. 201-231
[7] Effects of isometric scaling on vertical jumping performance, PLoS ONE, Volume 8 (2013)
[8] Optimizing the distribution of leg muscles for vertical jumping, PLoS ONE, Volume 11 (2016)
[9] Leg design and jumping technique for humans, other vertebrates and insects, Philos. Trans. R. Soc. Lond. B, Biol. Sci., Volume 347 (1995), pp. 235-248
[10] Scaling and jumping: gravity loses grip on small jumpers, J. Theor. Biol., Volume 240 (2006), pp. 554-561
[11] Liftoff dynamics in a simple jumping robot, Phys. Rev. Lett., Volume 109 (2012)
[12] How important are skeletal muscle mechanics in setting limits on jumping performance?, J. Exp. Biol., Volume 210 (2007), pp. 923-933
[13] The effect of animal design on jumping performance, J. Zool., Volume 204 (1984), pp. 533-539
[14] Living in a physical world III. Getting up to speed, J. Biosci., Volume 30 (2005), p. 303
[15] Fast actions in small animals: springs and click mechanisms, J. Comp. Physiol. A, Volume 178 (1996), pp. 727-734
[16] Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs, J. Exp. Biol., Volume 206 (2003), pp. 2567-2580
[17] Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping, Biol. Lett., Volume 8 (2012), pp. 386-389
[18] Vertical jumping in Galago senegalensis: the quest for an obligate mechanical power amplifier, Philos. Trans. R. Soc. Lond. B, Biol. Sci., Volume 353 (1998), pp. 1607-1620
[19] The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae), J. Exp. Biol., Volume 214 (2011), pp. 521-529
[20] Darwin's bee-trap: the kinetics of Catasetum, a New World orchid, Plant Signal. Behav., Volume 3 (2008), pp. 19-23
[21] Jumping robots: a biomimetic solution to locomotion across rough terrain, Bioinspir. Biomim., Volume 2 (2007), p. S65 (S82)
[22] M. Jarur, S. Rica, J. Dumais, 2019, in preparation.
Cited by Sources:
Comments - Policy