I will shortly review the history of experimental and theoretical findings on period doubling until the discovery of the quantitative universal properties of the infinite period-doubling cascade.
Cet article décrit brièvement l'histoire des expériences et des développements théoriques du doublage de période jusqu'à la découverte des propriétés quantitatives universelles de la cascade infinie.
Accepted:
Published online:
Mots-clés : Doublage de période, Bifurcation
Pierre Collet 1
@article{CRMECA_2019__347_4_287_0, author = {Pierre Collet}, title = {A short historical account of period doublings in the pre-renormalization era}, journal = {Comptes Rendus. M\'ecanique}, pages = {287--293}, publisher = {Elsevier}, volume = {347}, number = {4}, year = {2019}, doi = {10.1016/j.crme.2019.03.007}, language = {en}, }
Pierre Collet. A short historical account of period doublings in the pre-renormalization era. Comptes Rendus. Mécanique, Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique: hommage à Pierre Coullet, Volume 347 (2019) no. 4, pp. 287-293. doi : 10.1016/j.crme.2019.03.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.007/
[1] Frequency demultiplication, Nature, Volume 120 (1927), pp. 363-364
[2] The scientific work of Balthasar Van der Pol, Philips Tech. Rev., Volume 22 (1960) no. 2, pp. 36-52
[3] An experimental television transmitter and receiver, Philips Tech. Rev., Volume 1 (1936), pp. 16-21
[4] On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 121 (1831), pp. 299-340
[5] Recherches sur les vibrations longitudinales, Ann. Chim. Phys., Volume 65 (1837), pp. 337-402
[6] Etude des vibrations longitudinales des verges prismatiques libres aux deux extrémités, Faculté des sciences de Paris, 1859 (PhD thesis)
[7] Quelques expériences d'acoustique, Paris, 1882
[8] Experimental investigations on the maintenance of vibrations, Bull. Indian Assoc. Cultiv. Sci., Volume 6 (1912), pp. 1-40
[9] Some notes on the history of parametric transducers, Proc. IRE, Volume 48 (1960), pp. 848-853
[10] The engineer grapples with nonlinear problems, Bull. Am. Math. Soc., Volume 46 (1940), pp. 615-683 (Gibbs lecture, 1939)
[11] Subharmonics in forced oscillations in dissipative systems. Part i, J. Acoust. Soc. Am., Volume 6 (1935), pp. 227-238
[12] Maintenance of vibrations by forces of double frequency, and propagation of waves through a medium with a periodic structure, Philos. Mag., Volume 24 (1887), pp. 145-159
[13] The Theory of Sound, vol. I, MacMillan and Co., 1894
[14] On a class of forced oscillations, Q. J. Math., Volume 148 (1906)
[15] Les méthodes nouvelles de la mécanique céleste, vol. III, Gauthier-Villars, 1899
[16] Theory of Ordinary Differential Equations, McGraw-Hill, New York, NY, 1955
[17] Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields, Funct. Anal. Appl., Volume 1 (1977), pp. 1-10 (For an extended version, see Geometrical Methods in the Theory of Ordinary Differential Equations, 1988)
[18] A theory of the amplitude of free and forced triode vibrations, Radio Rev. (London), Volume 1 (1920), pp. 701-710 (754–762)
[19] Report on recent research on nonlinear oscillations, Tech. Phys. USSR, Volume 2 (1935), pp. 81-134 Original title: “Exposé des recherches récentes sur les oscillations non linéaires”. Original English Translation: Techtran Corporation, NASA TT F-12,678 (59 pages), November 1969
[20] Introduction to Non-Linear Mechanics, Princeton University Press, 1947
[21] The nonlinear theory of electric oscillations, Proc. Inst. Radio Eng., Volume 22 (1934), pp. 1051-1086
[22] History of Nonlinear Oscillations Theory in France (1880-1940), Springer, 2017
[23] Early developments of nonlinear science in soviet Russia: the Andronov school at Gorḱiy, Sci. Context, Volume 17 (2004), pp. 235-265
[24] Subharmonics in a non-linear system with unsymmetrical restoring force, Q. J. Mech. Appl. Math., Volume 2 (1949), pp. 198-207
[25] Stability investigation of the nonlinear periodic oscillations, J. Appl. Phys., Volume 24 (1953), pp. 344-348
[26] On the parametric excitation of electric oscillations, Zh. Tech. Fiz., Volume 4 (1934), pp. 5-29
[27] Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon & Breach, 1961
[28] Nonlinear Oscillations, John Wiley & Sons, Inc., 1995
[29] The Dynamic Stability of Elastic Systems, Holden-Day, 1964
[30] Theory of Oscillators, Pergamon Press, 1966
[31] Introduction to Non-Linear Mechanics, J.W. Edwards, 1947
[32] Nonlinear Vibrations, Pure and Applied Mathematics, vol. II, Interscience Publishers, 1950
[33] Ordinary Non-Linear Differential Equations in Engineering and Physical Sciences, Oxford at the Clarendon Press, 1950
[34] Nonlinear oscillations in power circuits: short history and recent research, Chaos Memorial Symposium in Asuka: Selected Papers Dedicated to Professor Yoshisuke Ueda on the Occasion of His 60th Birthday, 1997, pp. 25-34
[35] Subharmonics in circuits containing iron-cored reactors, AlEE Trans., Volume 57 (1938), pp. 423-431
[36] Subharmonic oscillations of a pendulum, J. Appl. Mech., Volume 27 (1960), pp. 159-164 (Comments by T. Caughey J. Appl. Mech., 27, 1960, pp. 754-755)
[37] Subharmonic components in cochlear-microphonic potentials, J. Acoust. Soc. Am., Volume 40 (1966), pp. 4-11
[38] Subharmonic and ultraharmonic solutions for weakly nonlinear differential systems, J. Ration. Mech. Anal., Volume 5 (1956), pp. 353-394
[39] Oscillations in Nonlinear Systems, Dover, 1963
[40] On one-parameter families of diffeomorphism, Comment. Math. Univ. Carol., Volume 11 (1970), pp. 559-582
[41] On one-parameter families of diffeomorphisms ii, Comment. Math. Univ. Carol., Volume 12 (1971), pp. 765-784
[42] Generic bifurcations of dynamical systems (M. Peixoto, ed.), Salvador Symposium on Dynamical Systems, Academic Press, 1973
[43] Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971), pp. 321-340
[44] Forced oscillations and bifurcations (G. Vegter; H. Broer; B. Krauskopf, eds.), Global Analysis of Dynamical Systems, Institute of Physics Publishing, 2001, pp. 1-62
[45] Bifurcation of Maps and Applications, North-Holland, 1979
[46] Subharmonics in forced oscillations in dissipative systems. Part ii, J. Acoust. Soc. Am., Volume 7 (1935), pp. 64-70
[47] Investigation of Subharmonic Oscillations in Nonlinear Second Order Systems, Naval Postgraduate School, 1970 (PhD thesis)
[48] Subharmonic Resonance in a Limit Cycling Voltage Regulator, 1970 (Thesis)
[49] Transformation theory as applied to the solutions of non-linear differential equations of the second order, Int. J. Non-Linear Mech., Volume 4 (1969), pp. 235-255
[50] Nonlinear Oscillations in Physical Systems, McGraw-Hill Book Company, 1964
[51] Subharmonic Generation in Acoustic Systems, Office of Naval Research, 1971 (Contract N00014-67-A-0298-0007 Technical Memorandum No. 65)
[52] Non-linear transformation studies on electronic computers, Rozprawy Mat., Volume 39 (1964), pp. 1-66
[53] Sur l'itération des polynômes réels quadratiques, J. Math. Pures Appl., Volume 41 (1962), pp. 339-351
[54] Coexistence of cycles of a continuous map of a line into itself, Ukr. Math. J., Volume 16 (1964), pp. 61-71
[55] On the bifurcation of maps of the interval, Invent. Math., Volume 39 (1977), pp. 165-178
[56] The Sharkovsky theorem: a natural direct proof, Am. Math. Mon., Volume 118 (2011), pp. 229-244
[57] Stable states of a non-linear transformation, Numer. Math., Volume 10 (1967), pp. 1-19
[58] On finite limit sets for transformations of the unit interval, J. Comb. Theory, Volume 15 (1973), pp. 25-44
[59] On iterated maps of the interval (J. Alexander, ed.), Dynamical Systems, Lecture Notes in Mathematics, vol. 1342, Springer, 1988, pp. 465-563
[60] On the behavior of self-oscillatory systems with external forcing, Electron. Commun. Jpn., Volume 53-A (1970), pp. 31-38
[61] Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol. 112, Springer, 1998
[62] (Encyclopedia of Mathematical Sciences), Volume vol. 5, Springer (1993), pp. 7-206 (chapter I)
[63] Mathematical models of competition, Control Inf., DVNC AN SSSR, Vladivostok, Volume 10 (1974), p. 575
[64] Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science, Volume 186 (1974), pp. 645-647
[65] Simple mathematical models with very complicated dynamics, Nature, Volume 261 (1976), pp. 459-467
[66] Bifurcations and dynamic complexity in simple ecological models, Am. Nat., Volume 110 (1976), pp. 573-579
[67] Accumulations de bifurcations dans une récurrence, C. R. Acad. Sci. Paris, Sér. A–B, Volume 281 (1975), p. A45-A48
[68] Systèmes a dynamique complexe et bifurcations de type « boites emboitées », RAIRO Autom. Syst. Anal. Control, Volume 12 (1978), pp. 63-94
[69] Itération d'endomorphismes et groupe de renormalisation, J. Phys., Colloq., Volume C5 (1978), pp. 25-28
[70] Itérations d'endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris, Ser. A, Volume 287 (1978), pp. 577-580
[71] Quantitative universality for a class of non-linear transformations, J. Stat. Phys., Volume 19 (1978), pp. 25-52
[72] Universal metric properties of bifurcations of endomorphisms, J. Phys. A, Volume 12 (1979), pp. 269-296
[73] The Chaos Avant-Garde: Memoirs of the Early Days of Chaos Theory, World Scientific, 2000
[74] Writing the history of dynamical systems and chaos: Longue durée and revolution, disciplines and cultures, Hist. Math., Volume 29 (2002), pp. 273-339
[75] A short history of dynamical systems theory: 1885-2007 (V. Hansen; J. Gray, eds.), History of Mathematics, EOLSS, 2010
[76] History of chaos from a French perspective (C. Skiadas, ed.), The Foundations of Chaos Revisited: From Poincaré to Recent Advancements, Springer, 2016, pp. 91-101
[77] Les héritiers de Poincaré (E. Falcon; C. Josserand; M. Lefranc; C. Letellier, eds.), Résumés des exposés de la 15e Rencontre du Non-Linéaire, Paris 2012, Institut Henri-Poincaré, 2012, pp. 1-18
[78] Des mouvements récurrents de birkhoff aux régimes quasi-périodiques, Rencontre du non-lineaire 2011, 2011, pp. 75-80
[79] Bifurcations, chaos, and fractal objects in Borges “garden of forking paths” and other writings, Rev. Centro Estud. Doc. Jorge Luis Borges, Volume 11 (2001), pp. 61-80
Cited by Sources:
Comments - Policy