Comptes Rendus
Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique : hommage à Pierre Coullet
A short historical account of period doublings in the pre-renormalization era
Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 287-293.

I will shortly review the history of experimental and theoretical findings on period doubling until the discovery of the quantitative universal properties of the infinite period-doubling cascade.

Cet article décrit brièvement l'histoire des expériences et des développements théoriques du doublage de période jusqu'à la découverte des propriétés quantitatives universelles de la cascade infinie.

Published online:
DOI: 10.1016/j.crme.2019.03.007
Keywords: Period doubling, Bifurcation
Mot clés : Doublage de période, Bifurcation

Pierre Collet 1

1 Centre de physique théorique, CNRS UMR 7644, École polytechnique, 91128 Palaiseau cedex, France
     author = {Pierre Collet},
     title = {A short historical account of period doublings in the pre-renormalization era},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {287--293},
     publisher = {Elsevier},
     volume = {347},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crme.2019.03.007},
     language = {en},
AU  - Pierre Collet
TI  - A short historical account of period doublings in the pre-renormalization era
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 287
EP  - 293
VL  - 347
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2019.03.007
LA  - en
ID  - CRMECA_2019__347_4_287_0
ER  - 
%0 Journal Article
%A Pierre Collet
%T A short historical account of period doublings in the pre-renormalization era
%J Comptes Rendus. Mécanique
%D 2019
%P 287-293
%V 347
%N 4
%I Elsevier
%R 10.1016/j.crme.2019.03.007
%G en
%F CRMECA_2019__347_4_287_0
Pierre Collet. A short historical account of period doublings in the pre-renormalization era. Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 287-293. doi : 10.1016/j.crme.2019.03.007.

[1] B. Van der Pol; J. Van der Mark Frequency demultiplication, Nature, Volume 120 (1927), pp. 363-364

[2] H. Bremmer The scientific work of Balthasar Van der Pol, Philips Tech. Rev., Volume 22 (1960) no. 2, pp. 36-52

[3] J. Van der Mark An experimental television transmitter and receiver, Philips Tech. Rev., Volume 1 (1936), pp. 16-21

[4] M. Faraday On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 121 (1831), pp. 299-340

[5] F. Savart Recherches sur les vibrations longitudinales, Ann. Chim. Phys., Volume 65 (1837), pp. 337-402

[6] A. Terquem Etude des vibrations longitudinales des verges prismatiques libres aux deux extrémités, Faculté des sciences de Paris, 1859 (PhD thesis)

[7] R. Koenig Quelques expériences d'acoustique, Paris, 1882

[8] C. Raman Experimental investigations on the maintenance of vibrations, Bull. Indian Assoc. Cultiv. Sci., Volume 6 (1912), pp. 1-40

[9] W. Mumford Some notes on the history of parametric transducers, Proc. IRE, Volume 48 (1960), pp. 848-853

[10] T. von Kármán The engineer grapples with nonlinear problems, Bull. Am. Math. Soc., Volume 46 (1940), pp. 615-683 (Gibbs lecture, 1939)

[11] P.O. Pedersen Subharmonics in forced oscillations in dissipative systems. Part i, J. Acoust. Soc. Am., Volume 6 (1935), pp. 227-238

[12] L. Rayleigh Maintenance of vibrations by forces of double frequency, and propagation of waves through a medium with a periodic structure, Philos. Mag., Volume 24 (1887), pp. 145-159

[13] L. Rayleigh The Theory of Sound, vol. I, MacMillan and Co., 1894

[14] A. Stephenson On a class of forced oscillations, Q. J. Math., Volume 148 (1906)

[15] H. Poincaré Les méthodes nouvelles de la mécanique céleste, vol. III, Gauthier-Villars, 1899

[16] E. Coddington; N. Levinson Theory of Ordinary Differential Equations, McGraw-Hill, New York, NY, 1955

[17] V. Arnol'd Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields, Funct. Anal. Appl., Volume 1 (1977), pp. 1-10 (For an extended version, see Geometrical Methods in the Theory of Ordinary Differential Equations, 1988)

[18] B. Van der Pol A theory of the amplitude of free and forced triode vibrations, Radio Rev. (London), Volume 1 (1920), pp. 701-710 (754–762)

[19] L. Mandelstam; N. Papalexi; A. Andronov; S. Chaikin; A. Witt Report on recent research on nonlinear oscillations, Tech. Phys. USSR, Volume 2 (1935), pp. 81-134 Original title: “Exposé des recherches récentes sur les oscillations non linéaires”. Original English Translation: Techtran Corporation, NASA TT F-12,678 (59 pages), November 1969

[20] N. Kryloff; N. Bogoliuboff Introduction to Non-Linear Mechanics, Princeton University Press, 1947

[21] B. Van der Pol The nonlinear theory of electric oscillations, Proc. Inst. Radio Eng., Volume 22 (1934), pp. 1051-1086

[22] J.-M. Ginoux History of Nonlinear Oscillations Theory in France (1880-1940), Springer, 2017

[23] A. Dalmedico; I. Gouzevitch Early developments of nonlinear science in soviet Russia: the Andronov school at Gorḱiy, Sci. Context, Volume 17 (2004), pp. 235-265

[24] G. Reuter Subharmonics in a non-linear system with unsymmetrical restoring force, Q. J. Mech. Appl. Math., Volume 2 (1949), pp. 198-207

[25] C. Hayashi Stability investigation of the nonlinear periodic oscillations, J. Appl. Phys., Volume 24 (1953), pp. 344-348

[26] L. Mandelstam; N. Papalexi On the parametric excitation of electric oscillations, Zh. Tech. Fiz., Volume 4 (1934), pp. 5-29

[27] N. Bogoliubov; Y. Mitropolsky Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon & Breach, 1961

[28] A. Nayfeh; D. Mook Nonlinear Oscillations, John Wiley & Sons, Inc., 1995

[29] V. Bolotin The Dynamic Stability of Elastic Systems, Holden-Day, 1964

[30] A. Andronov; A. Vitt; S. Khaikin Theory of Oscillators, Pergamon Press, 1966

[31] N. Minorsky Introduction to Non-Linear Mechanics, J.W. Edwards, 1947

[32] J. Stoker Nonlinear Vibrations, Pure and Applied Mathematics, vol. II, Interscience Publishers, 1950

[33] N.W. McLachlan Ordinary Non-Linear Differential Equations in Engineering and Physical Sciences, Oxford at the Clarendon Press, 1950

[34] K. Okumura Nonlinear oscillations in power circuits: short history and recent research, Chaos Memorial Symposium in Asuka: Selected Papers Dedicated to Professor Yoshisuke Ueda on the Occasion of His 60th Birthday, 1997, pp. 25-34

[35] I. Travis; C. Weygandt Subharmonics in circuits containing iron-cored reactors, AlEE Trans., Volume 57 (1938), pp. 423-431

[36] R. Skalak; M. Yarymovych Subharmonic oscillations of a pendulum, J. Appl. Mech., Volume 27 (1960), pp. 159-164 (Comments by T. Caughey J. Appl. Mech., 27, 1960, pp. 754-755)

[37] P. Dallos; C. Linnell Subharmonic components in cochlear-microphonic potentials, J. Acoust. Soc. Am., Volume 40 (1966), pp. 4-11

[38] R. Gambill; J. Hale Subharmonic and ultraharmonic solutions for weakly nonlinear differential systems, J. Ration. Mech. Anal., Volume 5 (1956), pp. 353-394

[39] J. Hale Oscillations in Nonlinear Systems, Dover, 1963

[40] P. Brunovsky On one-parameter families of diffeomorphism, Comment. Math. Univ. Carol., Volume 11 (1970), pp. 559-582

[41] P. Brunovsky On one-parameter families of diffeomorphisms ii, Comment. Math. Univ. Carol., Volume 12 (1971), pp. 765-784

[42] J. Sotomayor Generic bifurcations of dynamical systems (M. Peixoto, ed.), Salvador Symposium on Dynamical Systems, Academic Press, 1973

[43] M. Crandall; P. Rabinowitz Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971), pp. 321-340

[44] F. Takens Forced oscillations and bifurcations (G. Vegter; H. Broer; B. Krauskopf, eds.), Global Analysis of Dynamical Systems, Institute of Physics Publishing, 2001, pp. 1-62

[45] G. Ioos Bifurcation of Maps and Applications, North-Holland, 1979

[46] P.O. Pedersen Subharmonics in forced oscillations in dissipative systems. Part ii, J. Acoust. Soc. Am., Volume 7 (1935), pp. 64-70

[47] E. Carag Tangan Investigation of Subharmonic Oscillations in Nonlinear Second Order Systems, Naval Postgraduate School, 1970 (PhD thesis)

[48] M. Ali Güler Subharmonic Resonance in a Limit Cycling Voltage Regulator, 1970 (Thesis)

[49] C. Hayashi; Y. Ueda; H. Kawakami Transformation theory as applied to the solutions of non-linear differential equations of the second order, Int. J. Non-Linear Mech., Volume 4 (1969), pp. 235-255

[50] C. Hayashi Nonlinear Oscillations in Physical Systems, McGraw-Hill Book Company, 1964

[51] N.C. Yen Subharmonic Generation in Acoustic Systems, Office of Naval Research, 1971 (Contract N00014-67-A-0298-0007 Technical Memorandum No. 65)

[52] P. Stein; S. Ulam Non-linear transformation studies on electronic computers, Rozprawy Mat., Volume 39 (1964), pp. 1-66

[53] P. Myrberg Sur l'itération des polynômes réels quadratiques, J. Math. Pures Appl., Volume 41 (1962), pp. 339-351

[54] A. Sharkovsky Coexistence of cycles of a continuous map of a line into itself, Ukr. Math. J., Volume 16 (1964), pp. 61-71

[55] J. Guckenheimer On the bifurcation of maps of the interval, Invent. Math., Volume 39 (1977), pp. 165-178

[56] K. Burns; B. Hasselblatt The Sharkovsky theorem: a natural direct proof, Am. Math. Mon., Volume 118 (2011), pp. 229-244

[57] N. Metropolis; N. Stein; P. Stein Stable states of a non-linear transformation, Numer. Math., Volume 10 (1967), pp. 1-19

[58] N. Metropolis; M. Stein; P. Stein On finite limit sets for transformations of the unit interval, J. Comb. Theory, Volume 15 (1973), pp. 25-44

[59] J. Milnor; W. Thurston On iterated maps of the interval (J. Alexander, ed.), Dynamical Systems, Lecture Notes in Mathematics, vol. 1342, Springer, 1988, pp. 465-563

[60] C. Hayashi; Y. Ueda; N. Akamatsu; H. Itakura On the behavior of self-oscillatory systems with external forcing, Electron. Commun. Jpn., Volume 53-A (1970), pp. 31-38

[61] Y. Kuznetsov Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol. 112, Springer, 1998

[62] V. Arnol'd; V. Afrajmovich; Y. Il'yashenko; L. Shil'nikov (Encyclopedia of Mathematical Sciences), Volume vol. 5, Springer (1993), pp. 7-206 (chapter I)

[63] A. Shapiro Mathematical models of competition, Control Inf., DVNC AN SSSR, Vladivostok, Volume 10 (1974), p. 575

[64] R. May Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science, Volume 186 (1974), pp. 645-647

[65] R. May Simple mathematical models with very complicated dynamics, Nature, Volume 261 (1976), pp. 459-467

[66] R. May; G. Oster Bifurcations and dynamic complexity in simple ecological models, Am. Nat., Volume 110 (1976), pp. 573-579

[67] I. Gumowski; C. Mira Accumulations de bifurcations dans une récurrence, C. R. Acad. Sci. Paris, Sér. A–B, Volume 281 (1975), p. A45-A48

[68] C. Mira Systèmes a dynamique complexe et bifurcations de type « boites emboitées », RAIRO Autom. Syst. Anal. Control, Volume 12 (1978), pp. 63-94

[69] P. Coullet; C. Tresser Itération d'endomorphismes et groupe de renormalisation, J. Phys., Colloq., Volume C5 (1978), pp. 25-28

[70] C. Tresser; P. Coullet Itérations d'endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris, Ser. A, Volume 287 (1978), pp. 577-580

[71] M. Feigenbaum Quantitative universality for a class of non-linear transformations, J. Stat. Phys., Volume 19 (1978), pp. 25-52

[72] B. Derrida; A. Gervois; Y. Pomeau Universal metric properties of bifurcations of endomorphisms, J. Phys. A, Volume 12 (1979), pp. 269-296

[73] R. Abraham; Y. Ueda The Chaos Avant-Garde: Memoirs of the Early Days of Chaos Theory, World Scientific, 2000

[74] D. Aubin; A. Dalmedico Writing the history of dynamical systems and chaos: Longue durée and revolution, disciplines and cultures, Hist. Math., Volume 29 (2002), pp. 273-339

[75] P. Holmes A short history of dynamical systems theory: 1885-2007 (V. Hansen; J. Gray, eds.), History of Mathematics, EOLSS, 2010

[76] P. Coullet; Y. Pomeau History of chaos from a French perspective (C. Skiadas, ed.), The Foundations of Chaos Revisited: From Poincaré to Recent Advancements, Springer, 2016, pp. 91-101

[77] C. Mira Les héritiers de Poincaré (E. Falcon; C. Josserand; M. Lefranc; C. Letellier, eds.), Résumés des exposés de la 15e Rencontre du Non-Linéaire, Paris 2012, Institut Henri-Poincaré, 2012, pp. 1-18

[78] J.-M. Ginoux; C. Letellier Des mouvements récurrents de birkhoff aux régimes quasi-périodiques, Rencontre du non-lineaire 2011, 2011, pp. 75-80

[79] G. Schreiber; R. Umansky Bifurcations, chaos, and fractal objects in Borges “garden of forking paths” and other writings, Rev. Centro Estud. Doc. Jorge Luis Borges, Volume 11 (2001), pp. 61-80

Cited by Sources:

Comments - Policy