Comptes Rendus
Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique : hommage à Pierre Coullet
Quasipatterns versus superlattices resulting from the superposition of two hexagonal patterns
[Structures quasi cristallines et super-réseaux résultant de la superposition de deux réseaux hexagonaux]
Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 294-304.

Nous présentons une courte revue des observations expérimentales et des mécanismes qui ont permis d'engendrer des structures quasi cristallines à l'aide de l'instabilité de Faraday sous l'effet d'une excitation périodique comportant deux fréquences. Nous montrons comment l'excitation à deux fréquences permet d'obtenir des triades de vecteurs d'onde résonantes qui induisent la formation de structures hexagonales, de structures quasi cristallines dodécagonales ou de super-réseaux résultant de la superposition de deux réseaux d'hexagones tournés l'un par rapport à l'autre d'un angle α. Nous considérons ensuite quelles sont les structures obtenues lorsque α ne prend pas la série de valeurs discrètes conduisant à un super-réseau périodique. Nous montrons sur l'équation de Swift–Hohenberg qu'il existe dans ce cas des solutions à symétrie quasi cristalline pour presque toutes les valeurs de α. Nous discutons les raisons possibles pour lesquelles ces solutions n'ont pas été observées expérimentalement pour απ/6 et nous mentionnons un cadre plus simple qui permettrait d'éclaircir cette question.

We present a short review of the experimental observations and mechanisms related to the generation of quasipatterns and superlattices by the Faraday instability with two-frequency forcing. We show how two-frequency forcing makes possible triad interactions that generate hexagonal patterns, twelvefold quasipatterns or superlattices that consist of two hexagonal patterns rotated by an angle α relative to each other. We then consider which patterns could be observed when α does not belong to the set of prescribed values that give rise to periodic superlattices. Using the Swift–Hohenberg equation as a model, we find that quasipattern solutions exist for nearly all values of α. However, these quasipatterns have not been observed in experiments with the Faraday instability for απ/6. We discuss possible reasons and mention a simpler framework that could give some hint about this problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2019.03.006
Keywords: Bifurcations, Asymptotic series, Quasicrystals, Instability in fluids, Small divisors
Mot clés : Bifurcations, Séries asymptotiques, Quasi-cristaux, Instabilité dans les fluides, Petits diviseurs
Stéphan Fauve 1 ; Gérard Iooss 2

1 Laboratoire de physique statistique, École normale supérieure, PSL Research University, UPMC Université Paris-6, Sorbonne Universités, Université Paris-Diderot, Sorbonne Paris-Cité, CNRS, 24, rue Lhomond, 75005 Paris, France
2 Université Côte d'Azur, CNRS, LJAD, Parc Valrose 06108, Nice cedex 2, France
@article{CRMECA_2019__347_4_294_0,
     author = {St\'ephan Fauve and G\'erard Iooss},
     title = {Quasipatterns versus superlattices resulting from the superposition of two hexagonal patterns},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {294--304},
     publisher = {Elsevier},
     volume = {347},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crme.2019.03.006},
     language = {en},
}
TY  - JOUR
AU  - Stéphan Fauve
AU  - Gérard Iooss
TI  - Quasipatterns versus superlattices resulting from the superposition of two hexagonal patterns
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 294
EP  - 304
VL  - 347
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2019.03.006
LA  - en
ID  - CRMECA_2019__347_4_294_0
ER  - 
%0 Journal Article
%A Stéphan Fauve
%A Gérard Iooss
%T Quasipatterns versus superlattices resulting from the superposition of two hexagonal patterns
%J Comptes Rendus. Mécanique
%D 2019
%P 294-304
%V 347
%N 4
%I Elsevier
%R 10.1016/j.crme.2019.03.006
%G en
%F CRMECA_2019__347_4_294_0
Stéphan Fauve; Gérard Iooss. Quasipatterns versus superlattices resulting from the superposition of two hexagonal patterns. Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 294-304. doi : 10.1016/j.crme.2019.03.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.006/

[1] M. Faraday On the forms and states assumed by fluids in contact with vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 52 (1831), pp. 319-340

[2] W. Thomson Hydrokinetic solutions and observations, Philos. Mag., Volume 42 (1871), pp. 362-377

[3] H. Bénard; H. Bénard Mouvements tourbillonnaires à structure cellulaire. Étude optique de la surface libre, C. r. hebd. séances Acad. sci., Volume 130 (1900), pp. 1004-1007

[4] S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961

[5] D. Shechtman; I. Blech; D. Gratias; J.W. Cahn Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953

[6] S. Fauve Free Surface Flows (H.C. Kuhlmann; H.J. Rath, eds.), CISM Courses and Lectures, vol. 391, 1998, pp. 1-44 (For a review on surface waves, see for instance Waves on interfaces)

[7] K. Kumar Linear theory of Faraday instability in viscous liquids, Proc. R. Soc. Lond., Ser. A, Volume 452 (1996), p. 1113

[8] A.B. Ezerskii; M.I. Rabinovich; V.P. Reutov; I.M. Starobinets Spatiotemporal chaos in the parametric excitation of a capillary ripple, Sov. Phys. JETP, Volume 64 (1986), p. 1228

[9] N.B. Tufillaro; R. Ramshankar; J.P. Gollub Order-disorder transition in capillary ripples, Phys. Rev. Lett., Volume 62 (1989), pp. 422-425

[10] S. Ciliberto; S. Douady; S. Fauve Investigating space-time chaos in Faraday instability by means of the fluctuations of the driving acceleration, Europhys. Lett., Volume 15 (1991), pp. 23-28

[11] S. Fauve; K. Kumar; C. Laroche; D. Beysens; Y. Garrabos Parametric instability of a liquid-vapor interface close to the critical point, Phys. Rev. Lett., Volume 68 (1992), pp. 3160-3163

[12] W.S. Edwards; S. Fauve Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech., Volume 278 (1994), pp. 123-148

[13] K. Kumar; K.M.S. Bajaj Competing patterns in the Faraday experiment, Phys. Rev. E, Volume 52 (1995), pp. 4606-4609

[14] W. Zhang; J. Vinals Pattern formation in weakly damped parametric surface waves, J. Fluid Mech., Volume 336 (1997), pp. 301-330

[15] P.L. Chen; J. Vinals Amplitude equation and pattern selection in Faraday waves, Phys. Rev. E, Volume 60 (1999), pp. 559-570

[16] D. Binks; W. van de Water Nonlinear pattern formation of Faraday waves, Phys. Rev. Lett., Volume 78 (1997), pp. 4043-4046

[17] S. Douady; S. Fauve Pattern selection in Faraday instability, Europhys. Lett., Volume 6 (1988), pp. 221-226

[18] L. Kahouadji; N. Périnet; L. Tuckerman; S. Shin; J. Chergui; D. Juric Numerical simulation of supersquare patterns in Faraday waves, J. Fluid Mech., Volume 772 (2015)

[19] W.S. Edwards; S. Fauve Structure quasicristalline engendrée par instabilité paramétrique, C. R. Acad. Sci. Paris, Ser. II, Volume 315 (1992), pp. 417-420

[20] N.D. Mermin; S.M. Troian Mean-field theory of quasicrystalline order, Phys. Rev. Lett., Volume 54 (1985), pp. 1524-1527

[21] J. Miles; D. Henderson Parametrically forced surface waves, Annu. Rev. Fluid Mech., Volume 22 (1990), pp. 143-165 (For a review, see and references therein)

[22] S.T. Milner Square patterns and secondary instabilities in driven capillary waves, J. Fluid Mech., Volume 225 (1991), pp. 81-100

[23] N.O. Rojas; M. Argentina; E. Cerda; E. Tirapegui Inertial lubrication theory, Phys. Rev. Lett., Volume 104 (2010)

[24] M. Argentina; G. Iooss Quasipatterns in a parametrically forced horizontal fluid film, Physica D, Volume 241 (2012), pp. 1306-1321

[25] H.W. Muller Model equations for two-dimensional quasipatterns, Phys. Rev. E, Volume 49 (1994), pp. 1273-1277

[26] R. Lifshitz; D.M. Petrich Theoretical model for Faraday waves with multiple-frequency forcing, Phys. Rev. Lett., Volume 79 (1997), pp. 1261-1264

[27] M. Silber; A.C. Skeldon Parametrically excited surface waves: two-frequency forcing, normal form symmetries, and pattern selection, Phys. Rev. E, Volume 59 (1999), pp. 5446-5456

[28] C.M. Topaz; J. Porter; M. Silber Multifrequency control of Faraday wave patterns, Phys. Rev. E, Volume 70 (2004)

[29] A.M. Rucklidge; M. Silber Design of parametrically forced patterns and quasipatterns, SIAM J. Appl. Dyn. Syst., Volume 8 (2009), pp. 298-347

[30] A.C. Newell; Y. Pomeau Turbulent crystals in macroscopic systems, J. Phys. A, Volume 26 (1993), p. L429-L434

[31] A.M. Rucklidge; W.J. Rucklidge Convergence properties of the 8, 10 and 12 mode representations of quasipatterns, Physica D, Volume 178 (2003), pp. 62-82

[32] G. Iooss; A.M. Rucklidge On the existence of quasipattern solutions of the Swift–Hohenberg equation, J. Nonlinear Sci., Volume 20 (2010), pp. 361-394

[33] B. Braaksma; G. Iooss; L. Stolovitch Existence proof of quasipatterns solutions of the Swift–Hohenberg equation, Commun. Math. Phys., Volume 353 (2017) no. 1, pp. 37-67 | DOI

[34] B. Braaksma; G. Iooss Existence of bifurcating quasipatterns in steady Bénard-Rayleigh convection, Arch. Ration. Mech. Anal., Volume 231 (2019) no. 3, pp. 1917-1981 | DOI

[35] A. Kudrolli; B. Pier; J.P. Gollub Superlattice patterns in surface waves, Physica D, Volume 123 (1998), pp. 99-111

[36] H. Arbell; J. Fineberg Pattern formation in two-frequency forced parametric waves, Phys. Rev. E, Volume 65 (2002)

[37] T. Epstein; J. Fineberg Grid states and nonlinear selection in parametrically excited surface waves, Phys. Rev. E, Volume 73 (2006) 055302(R)

[38] M. Silber; M.R.E. Proctor Nonlinear competition between small and large hexagonal patterns, Phys. Rev. Lett., Volume 81 (1998), pp. 2450-2453

[39] G. Iooss Existence of quasipatterns in the superposition of two hexagonal patterns, Nonlinearity (2019) (to appear)

[40] P. Coullet Commensurate-incommensurate transition in nonequilibrium systems, Phys. Rev. Lett., Volume 56 (1986), pp. 724-727

[41] P. Coullet; D. Repaux Strong resonances of periodic patterns, Europhys. Lett., Volume 3 (1987), pp. 573-579

[42] C.R. Woods et al. Commensurate-incommensurate transition in graphene on hexgonal boron nitride, Nat. Phys., Volume 10 (2014), pp. 451-456

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Viscoelastic surface instabilities

Anke Lindner; Christian Wagner

C. R. Phys (2009)


Large time behaviour of solutions of the Swift–Hohenberg equation

Lambertus A. Peletier; Vivi Rottschäfer

C. R. Math (2003)


Coarsening versus pattern formation

Alexander A. Nepomnyashchy

C. R. Phys (2015)