We present a short review of the experimental observations and mechanisms related to the generation of quasipatterns and superlattices by the Faraday instability with two-frequency forcing. We show how two-frequency forcing makes possible triad interactions that generate hexagonal patterns, twelvefold quasipatterns or superlattices that consist of two hexagonal patterns rotated by an angle α relative to each other. We then consider which patterns could be observed when α does not belong to the set of prescribed values that give rise to periodic superlattices. Using the Swift–Hohenberg equation as a model, we find that quasipattern solutions exist for nearly all values of α. However, these quasipatterns have not been observed in experiments with the Faraday instability for . We discuss possible reasons and mention a simpler framework that could give some hint about this problem.
Nous présentons une courte revue des observations expérimentales et des mécanismes qui ont permis d'engendrer des structures quasi cristallines à l'aide de l'instabilité de Faraday sous l'effet d'une excitation périodique comportant deux fréquences. Nous montrons comment l'excitation à deux fréquences permet d'obtenir des triades de vecteurs d'onde résonantes qui induisent la formation de structures hexagonales, de structures quasi cristallines dodécagonales ou de super-réseaux résultant de la superposition de deux réseaux d'hexagones tournés l'un par rapport à l'autre d'un angle α. Nous considérons ensuite quelles sont les structures obtenues lorsque α ne prend pas la série de valeurs discrètes conduisant à un super-réseau périodique. Nous montrons sur l'équation de Swift–Hohenberg qu'il existe dans ce cas des solutions à symétrie quasi cristalline pour presque toutes les valeurs de α. Nous discutons les raisons possibles pour lesquelles ces solutions n'ont pas été observées expérimentalement pour et nous mentionnons un cadre plus simple qui permettrait d'éclaircir cette question.
Accepted:
Published online:
Mots-clés : Bifurcations, Séries asymptotiques, Quasi-cristaux, Instabilité dans les fluides, Petits diviseurs
Stéphan Fauve 1; Gérard Iooss 2
@article{CRMECA_2019__347_4_294_0, author = {St\'ephan Fauve and G\'erard Iooss}, title = {Quasipatterns versus superlattices resulting from the superposition of two hexagonal patterns}, journal = {Comptes Rendus. M\'ecanique}, pages = {294--304}, publisher = {Elsevier}, volume = {347}, number = {4}, year = {2019}, doi = {10.1016/j.crme.2019.03.006}, language = {en}, }
TY - JOUR AU - Stéphan Fauve AU - Gérard Iooss TI - Quasipatterns versus superlattices resulting from the superposition of two hexagonal patterns JO - Comptes Rendus. Mécanique PY - 2019 SP - 294 EP - 304 VL - 347 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2019.03.006 LA - en ID - CRMECA_2019__347_4_294_0 ER -
Stéphan Fauve; Gérard Iooss. Quasipatterns versus superlattices resulting from the superposition of two hexagonal patterns. Comptes Rendus. Mécanique, Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique: hommage à Pierre Coullet, Volume 347 (2019) no. 4, pp. 294-304. doi : 10.1016/j.crme.2019.03.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.006/
[1] On the forms and states assumed by fluids in contact with vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 52 (1831), pp. 319-340
[2] Hydrokinetic solutions and observations, Philos. Mag., Volume 42 (1871), pp. 362-377
[3] Mouvements tourbillonnaires à structure cellulaire. Étude optique de la surface libre, C. r. hebd. séances Acad. sci., Volume 130 (1900), pp. 1004-1007
[4] Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961
[5] Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953
[6] Free Surface Flows (H.C. Kuhlmann; H.J. Rath, eds.), CISM Courses and Lectures, vol. 391, 1998, pp. 1-44 (For a review on surface waves, see for instance Waves on interfaces)
[7] Linear theory of Faraday instability in viscous liquids, Proc. R. Soc. Lond., Ser. A, Volume 452 (1996), p. 1113
[8] Spatiotemporal chaos in the parametric excitation of a capillary ripple, Sov. Phys. JETP, Volume 64 (1986), p. 1228
[9] Order-disorder transition in capillary ripples, Phys. Rev. Lett., Volume 62 (1989), pp. 422-425
[10] Investigating space-time chaos in Faraday instability by means of the fluctuations of the driving acceleration, Europhys. Lett., Volume 15 (1991), pp. 23-28
[11] Parametric instability of a liquid-vapor interface close to the critical point, Phys. Rev. Lett., Volume 68 (1992), pp. 3160-3163
[12] Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech., Volume 278 (1994), pp. 123-148
[13] Competing patterns in the Faraday experiment, Phys. Rev. E, Volume 52 (1995), pp. 4606-4609
[14] Pattern formation in weakly damped parametric surface waves, J. Fluid Mech., Volume 336 (1997), pp. 301-330
[15] Amplitude equation and pattern selection in Faraday waves, Phys. Rev. E, Volume 60 (1999), pp. 559-570
[16] Nonlinear pattern formation of Faraday waves, Phys. Rev. Lett., Volume 78 (1997), pp. 4043-4046
[17] Pattern selection in Faraday instability, Europhys. Lett., Volume 6 (1988), pp. 221-226
[18] Numerical simulation of supersquare patterns in Faraday waves, J. Fluid Mech., Volume 772 (2015)
[19] Structure quasicristalline engendrée par instabilité paramétrique, C. R. Acad. Sci. Paris, Ser. II, Volume 315 (1992), pp. 417-420
[20] Mean-field theory of quasicrystalline order, Phys. Rev. Lett., Volume 54 (1985), pp. 1524-1527
[21] Parametrically forced surface waves, Annu. Rev. Fluid Mech., Volume 22 (1990), pp. 143-165 (For a review, see and references therein)
[22] Square patterns and secondary instabilities in driven capillary waves, J. Fluid Mech., Volume 225 (1991), pp. 81-100
[23] Inertial lubrication theory, Phys. Rev. Lett., Volume 104 (2010)
[24] Quasipatterns in a parametrically forced horizontal fluid film, Physica D, Volume 241 (2012), pp. 1306-1321
[25] Model equations for two-dimensional quasipatterns, Phys. Rev. E, Volume 49 (1994), pp. 1273-1277
[26] Theoretical model for Faraday waves with multiple-frequency forcing, Phys. Rev. Lett., Volume 79 (1997), pp. 1261-1264
[27] Parametrically excited surface waves: two-frequency forcing, normal form symmetries, and pattern selection, Phys. Rev. E, Volume 59 (1999), pp. 5446-5456
[28] Multifrequency control of Faraday wave patterns, Phys. Rev. E, Volume 70 (2004)
[29] Design of parametrically forced patterns and quasipatterns, SIAM J. Appl. Dyn. Syst., Volume 8 (2009), pp. 298-347
[30] Turbulent crystals in macroscopic systems, J. Phys. A, Volume 26 (1993), p. L429-L434
[31] Convergence properties of the 8, 10 and 12 mode representations of quasipatterns, Physica D, Volume 178 (2003), pp. 62-82
[32] On the existence of quasipattern solutions of the Swift–Hohenberg equation, J. Nonlinear Sci., Volume 20 (2010), pp. 361-394
[33] Existence proof of quasipatterns solutions of the Swift–Hohenberg equation, Commun. Math. Phys., Volume 353 (2017) no. 1, pp. 37-67 | DOI
[34] Existence of bifurcating quasipatterns in steady Bénard-Rayleigh convection, Arch. Ration. Mech. Anal., Volume 231 (2019) no. 3, pp. 1917-1981 | DOI
[35] Superlattice patterns in surface waves, Physica D, Volume 123 (1998), pp. 99-111
[36] Pattern formation in two-frequency forced parametric waves, Phys. Rev. E, Volume 65 (2002)
[37] Grid states and nonlinear selection in parametrically excited surface waves, Phys. Rev. E, Volume 73 (2006) 055302(R)
[38] Nonlinear competition between small and large hexagonal patterns, Phys. Rev. Lett., Volume 81 (1998), pp. 2450-2453
[39] Existence of quasipatterns in the superposition of two hexagonal patterns, Nonlinearity (2019) (to appear)
[40] Commensurate-incommensurate transition in nonequilibrium systems, Phys. Rev. Lett., Volume 56 (1986), pp. 724-727
[41] Strong resonances of periodic patterns, Europhys. Lett., Volume 3 (1987), pp. 573-579
[42] et al. Commensurate-incommensurate transition in graphene on hexgonal boron nitride, Nat. Phys., Volume 10 (2014), pp. 451-456
Cited by Sources:
Comments - Policy