Comptes Rendus
Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique : hommage à Pierre Coullet
A brittle material with tunable elasticity: Crêpe paper
Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 382-388.

We study the mechanical response, and tearing features of crêpe paper, a two-dimensional, very anisotropic material, with one direction much less stiff than the other one. Depending on how the soft direction has been pre-stretched or not, the apparent Young modulus of the material can be varied over a broad range, while its fracture energy remains unaltered. The classical tearing concertina problem shows that a macroscopic measurement (the shape of the teared region) provides a direct access to the fracture properties of the material (effective Young's modulus, and fracture energy). The overall discussion is conducted in the frame of Griffith's theory of fracture.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2019.03.013
Keywords: Patterns, Fracture

Nicolas Vandenberghe 1; Emmanuel Villermaux 1

1 Aix Marseille Université, CNRS, Centrale Marseille, IRPHE, Marseille, France
@article{CRMECA_2019__347_4_382_0,
     author = {Nicolas Vandenberghe and Emmanuel Villermaux},
     title = {A brittle material with tunable elasticity: {Cr\^epe} paper},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {382--388},
     publisher = {Elsevier},
     volume = {347},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crme.2019.03.013},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Vandenberghe
AU  - Emmanuel Villermaux
TI  - A brittle material with tunable elasticity: Crêpe paper
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 382
EP  - 388
VL  - 347
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2019.03.013
LA  - en
ID  - CRMECA_2019__347_4_382_0
ER  - 
%0 Journal Article
%A Nicolas Vandenberghe
%A Emmanuel Villermaux
%T A brittle material with tunable elasticity: Crêpe paper
%J Comptes Rendus. Mécanique
%D 2019
%P 382-388
%V 347
%N 4
%I Elsevier
%R 10.1016/j.crme.2019.03.013
%G en
%F CRMECA_2019__347_4_382_0
Nicolas Vandenberghe; Emmanuel Villermaux. A brittle material with tunable elasticity: Crêpe paper. Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 382-388. doi : 10.1016/j.crme.2019.03.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.013/

[1] S. Bohn; J. Platkiewicz; B. Andreotti; M. Adda-Bedia; Y. Couder Hierarchical crack pattern as formed by successive domain divisions. II. From disordered to deterministic behavior, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 71 (2005) no. 4

[2] M.L. Fender; F. Lechenault; K.E. Daniels Universal shapes formed by two interacting cracks, Phys. Rev. Lett., Volume 105 (2010)

[3] M.-J. Dalbe; J. Koivisto; L. Vanel; A. Miksic; O. Ramos; M. Alava; S. Santucci Repulsion and attraction between a pair of cracks in a plastic sheet, Phys. Rev. Lett., Volume 114 (2015)

[4] E. Villermaux Self-activated fragmentation, Int. J. Fract., Volume 206 (2017), pp. 171-193

[5] B. Cotterell; J.R. Rice Slightly curved or kinked cracks, Int. J. Fract., Volume 16 (1980) no. 2, pp. 155-169

[6] V. Hakim; A. Karma Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids, Volume 57 (2009), pp. 342-368

[7] B. Roman Fracture path in brittle thin sheets: a unifying review on tearing, Int. J. Fract., Volume 182 (2013) no. 2, pp. 209-237

[8] N. Vandenberghe; E. Villermaux Geometry and fragmentation of soft brittle impacted bodies, Soft Matter, Volume 9 (2013) no. 34, p. 8162

[9] A. Griffith The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond., Ser. A, Contain. Pap. Math. Phys. Character, Volume 221 (1921), pp. 163-198

[10] T. Tallinen; L. Mahadevan Forced tearing of ductile and brittle thin sheets, Phys. Rev. Lett., Volume 107 (2011) no. 24

[11] T. Wierzbicki Concertina tearing of metal plates, Int. J. Solids Struct., Volume 32 (1995) no. 19, p. 2923

[12] T. Wierzbicki; K. Trauth; A. Atkins On diverging concertina tearing, J. Appl. Mech., Volume 65 (1998), p. 990

[13] H. Bouasse; Z. Carrière Sur les courbes de traction du caoutchouc vulcanisé, Ann. Fac. Sci. Toulouse, 2 Ser., Volume 5 (1903), pp. 257-283

[14] A. Reid; F. Lechenault; S. Rica; M. Adda-Bedia Geometry and design of origami bellows with tunable response, Phys. Rev. E, Volume 95 (2017)

[15] F. Lechenault; B. Thiria; M. Adda-Bedia Mechanical response of a creased sheet, Phys. Rev. Lett., Volume 112 (2014)

Cited by Sources:

Comments - Policy