We perform numerical simulations of hexagonal quantum dots of AlGaN semiconductors. We show that the competition between surface mass diffusion and evaporation rules the morphology of the quantum dots. The system displays three different behaviors: presence of separated islands without a wetting layer, islands dissolving into the wetting layer, or islands that do not evolve. The first behavior is of special interest because its optoelectrical properties are significantly improved in comparison with quantum dots with a wetting layer.
Nous effectuons une simulation numérique des boîtes quantiques hexagonales de semiconducteurs AlGaN. Nous montrons que la compétition entre la diffusion de masse en surface et l'évaporation détermine la morphologie des boîtes quantiques. Le système montre trois comportements différents : des îlots séparés sans couche de mouillage, des îlots se dissolvant dans la couche de mouillage ou des îlots ne pouvant évoluer. Le premier comportement présente un intérêt particulier, car les propriétés optoélectriques sont considérablement améliorées par rapport aux boîtes quantiques avec une couche de mouillage.
Accepted:
Published online:
Mots-clés : Boîtes quantiques hexagonales, Évaporation préférentielle, Croissance hétéroépotaxiale
Guido Schifani 1; Thomas Frisch 1; Jean-Noël Aqua 2
@article{CRMECA_2019__347_4_376_0, author = {Guido Schifani and Thomas Frisch and Jean-No\"el Aqua}, title = {Growth of hexagonal quantum dots under preferential evaporation}, journal = {Comptes Rendus. M\'ecanique}, pages = {376--381}, publisher = {Elsevier}, volume = {347}, number = {4}, year = {2019}, doi = {10.1016/j.crme.2019.03.012}, language = {en}, }
TY - JOUR AU - Guido Schifani AU - Thomas Frisch AU - Jean-Noël Aqua TI - Growth of hexagonal quantum dots under preferential evaporation JO - Comptes Rendus. Mécanique PY - 2019 SP - 376 EP - 381 VL - 347 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2019.03.012 LA - en ID - CRMECA_2019__347_4_376_0 ER -
Guido Schifani; Thomas Frisch; Jean-Noël Aqua. Growth of hexagonal quantum dots under preferential evaporation. Comptes Rendus. Mécanique, Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique: hommage à Pierre Coullet, Volume 347 (2019) no. 4, pp. 376-381. doi : 10.1016/j.crme.2019.03.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.012/
[1] Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., Volume 71 (1999), pp. 1125-1171
[2] Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys., Volume 76 (2004), pp. 725-783
[3] Ultraviolet light emitting diodes using III–N quantum dots, Mater. Sci. Semicond. Process., Volume 55 (2016), pp. 95-101
[4] Morphological instability in epitaxially strained dislocation-free solid films, Phys. Rev. Lett., Volume 67 (1991), pp. 3696-3699
[5] Elastic effects on surface physics, Surf. Sci. Rep., Volume 54 (2004) no. 5, pp. 157-258
[6] Common features of nanostructure formation induced by the surface undulation on the Stranski–Krastanow systems, Appl. Phys. Lett., Volume 89 (2006) no. 17
[7] Interrupted self-organization of sige pyramids, Phys. Rev. Lett., Volume 110 (2013)
[8] Growth and self-organization of SiGe nanostructures, Phys. Rep., Volume 522 (2013) no. 2, pp. 59-189
[9] Symmetry breaking in shape transitions of epitaxial quantum dots, Phys. Rev. B, Volume 87 (2013)
[10] Asymmetric shape transitions of epitaxial quantum dots, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 472 (2016) no. 2190
[11] Modeling the competition between elastic and plastic relaxation in semiconductor heteroepitaxy: from cyclic growth to flat films, Phys. Rev. B, Volume 94 (2016)
[12] A Fokker–Planck reaction model for the epitaxial growth and shape transition of quantum dots, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 473 (2017) no. 2206
[13] Shape and coarsening dynamics of strained islands, Phys. Rev. E, Volume 94 (2016)
[14] Equilibrium and dynamics of strained islands, Phys. Rev. E, Volume 97 (2018)
[15] Zur Theorie der orientierten Ausscheidung von ionenkristallen Aufeinander, Monatsh. Chem. Verw. Tl. And. Wiss., Volume 71 (1937) no. 1, pp. 351-364
[16] Nucleationless three-dimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett., Volume 84 (2000), pp. 4637-4640
[17] Instability-driven Si–Ge island growth, Phys. Rev. Lett., Volume 84 (2000), pp. 4641-4644
[18] Interface morphology development during stress corrosion cracking: part I. Via surface diffusion, Metall. Trans., Volume 3 (1972) no. 7, pp. 1789-1796
[19] Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B, Volume 82 (2010)
[20] Formation of gan quantum dots by molecular beam epitaxy using as nitrogen source, J. Appl. Phys., Volume 118 (2015) no. 2
[21] Investigation of quantum dot properties for the design of ultraviolet emitters, Jpn. J. Appl. Phys., Volume 55 (2016) no. 5S
[22] Selective area sublimation: a simple top-down route for gan-based nanowire fabrication, Nano Lett., Volume 16 (2016) no. 3, pp. 1863-1868 (PMID: 26885770)
[23] Instability of the separation boundary between a nonhydrostatically stressed elastic body and a melt, Sov. Phys. Dokl., Volume 31 (1986), p. 831
Cited by Sources:
Comments - Policy