Comptes Rendus
Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique : hommage à Pierre Coullet
Growth of hexagonal quantum dots under preferential evaporation
[Croissance de boîtes quantiques hexagonales sous évaporation préférentielle]
Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 376-381.

Nous effectuons une simulation numérique des boîtes quantiques hexagonales de semiconducteurs AlGaN. Nous montrons que la compétition entre la diffusion de masse en surface et l'évaporation détermine la morphologie des boîtes quantiques. Le système montre trois comportements différents : des îlots séparés sans couche de mouillage, des îlots se dissolvant dans la couche de mouillage ou des îlots ne pouvant évoluer. Le premier comportement présente un intérêt particulier, car les propriétés optoélectriques sont considérablement améliorées par rapport aux boîtes quantiques avec une couche de mouillage.

We perform numerical simulations of hexagonal quantum dots of AlGaN semiconductors. We show that the competition between surface mass diffusion and evaporation rules the morphology of the quantum dots. The system displays three different behaviors: presence of separated islands without a wetting layer, islands dissolving into the wetting layer, or islands that do not evolve. The first behavior is of special interest because its optoelectrical properties are significantly improved in comparison with quantum dots with a wetting layer.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2019.03.012
Keywords: Hexagonal quantum dots, Preferential evaporation, Heteroepotaxial growth
Mot clés : Boîtes quantiques hexagonales, Évaporation préférentielle, Croissance hétéroépotaxiale
Guido Schifani 1 ; Thomas Frisch 1 ; Jean-Noël Aqua 2

1 Université Côte d'Azur, CNRS, Institut de physique de Nice, Parc Valrose, 06108 Nice, France
2 Sorbonne Université, CNRS, Institut des nanosciences de Paris, INSP, UMR 7588, 4, place Jussieu, 75005 Paris, France
@article{CRMECA_2019__347_4_376_0,
     author = {Guido Schifani and Thomas Frisch and Jean-No\"el Aqua},
     title = {Growth of hexagonal quantum dots under preferential evaporation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {376--381},
     publisher = {Elsevier},
     volume = {347},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crme.2019.03.012},
     language = {en},
}
TY  - JOUR
AU  - Guido Schifani
AU  - Thomas Frisch
AU  - Jean-Noël Aqua
TI  - Growth of hexagonal quantum dots under preferential evaporation
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 376
EP  - 381
VL  - 347
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2019.03.012
LA  - en
ID  - CRMECA_2019__347_4_376_0
ER  - 
%0 Journal Article
%A Guido Schifani
%A Thomas Frisch
%A Jean-Noël Aqua
%T Growth of hexagonal quantum dots under preferential evaporation
%J Comptes Rendus. Mécanique
%D 2019
%P 376-381
%V 347
%N 4
%I Elsevier
%R 10.1016/j.crme.2019.03.012
%G en
%F CRMECA_2019__347_4_376_0
Guido Schifani; Thomas Frisch; Jean-Noël Aqua. Growth of hexagonal quantum dots under preferential evaporation. Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 376-381. doi : 10.1016/j.crme.2019.03.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.012/

[1] V.A. Shchukin; D. Bimberg Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., Volume 71 (1999), pp. 1125-1171

[2] J. Stangl; V. Holý; G. Bauer Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys., Volume 76 (2004), pp. 725-783

[3] J. Brault; S. Matta; T.-H. Ngo; D. Rosales; M. Leroux; B. Damilano; M. Al Khalfioui; F. Tendille; S. Chenot; P. De Mierry; J. Massies; B. Gil Ultraviolet light emitting diodes using III–N quantum dots, Mater. Sci. Semicond. Process., Volume 55 (2016), pp. 95-101

[4] B.J. Spencer; P.W. Voorhees; S.H. Davis Morphological instability in epitaxially strained dislocation-free solid films, Phys. Rev. Lett., Volume 67 (1991), pp. 3696-3699

[5] P. Müller; A. Saúl Elastic effects on surface physics, Surf. Sci. Rep., Volume 54 (2004) no. 5, pp. 157-258

[6] C.-H. Chiu; Z. Huang Common features of nanostructure formation induced by the surface undulation on the Stranski–Krastanow systems, Appl. Phys. Lett., Volume 89 (2006) no. 17

[7] J.-N. Aqua; A. Gouyé; A. Ronda; T. Frisch; I. Berbezier Interrupted self-organization of sige pyramids, Phys. Rev. Lett., Volume 110 (2013)

[8] J.-N. Aqua; I. Berbezier; L. Favre; T. Frisch; A. Ronda Growth and self-organization of SiGe nanostructures, Phys. Rep., Volume 522 (2013) no. 2, pp. 59-189

[9] B.J. Spencer; J. Tersoff Symmetry breaking in shape transitions of epitaxial quantum dots, Phys. Rev. B, Volume 87 (2013)

[10] C. Wei; B.J. Spencer Asymmetric shape transitions of epitaxial quantum dots, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 472 (2016) no. 2190

[11] F. Rovaris; R. Bergamaschini; F. Montalenti Modeling the competition between elastic and plastic relaxation in semiconductor heteroepitaxy: from cyclic growth to flat films, Phys. Rev. B, Volume 94 (2016)

[12] C. Wei; B.J. Spencer A Fokker–Planck reaction model for the epitaxial growth and shape transition of quantum dots, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 473 (2017) no. 2206

[13] G. Schifani; T. Frisch; M. Argentina; J.-N. Aqua Shape and coarsening dynamics of strained islands, Phys. Rev. E, Volume 94 (2016)

[14] G. Schifani; T. Frisch; M. Argentina Equilibrium and dynamics of strained islands, Phys. Rev. E, Volume 97 (2018)

[15] I.N. Stranski; L. Krastanow Zur Theorie der orientierten Ausscheidung von ionenkristallen Aufeinander, Monatsh. Chem. Verw. Tl. And. Wiss., Volume 71 (1937) no. 1, pp. 351-364

[16] P. Sutter; M.G. Lagally Nucleationless three-dimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett., Volume 84 (2000), pp. 4637-4640

[17] R.M. Tromp; F.M. Ross; M.C. Reuter Instability-driven Si–Ge island growth, Phys. Rev. Lett., Volume 84 (2000), pp. 4641-4644

[18] R.J. Asaro; W.A. Tiller Interface morphology development during stress corrosion cracking: part I. Via surface diffusion, Metall. Trans., Volume 3 (1972) no. 7, pp. 1789-1796

[19] J.-N. Aqua; T. Frisch Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B, Volume 82 (2010)

[20] B. Damilano; J. Brault; J. Massies Formation of gan quantum dots by molecular beam epitaxy using NH3 as nitrogen source, J. Appl. Phys., Volume 118 (2015) no. 2

[21] J. Brault; S. Matta; T.-H. Ngo; M. Korytov; D. Rosales; B. Damilano; M. Leroux; P. Vennéguès; M. Al Khalfioui; A. Courville; O. Tottereau; J. Massies; B. Gil Investigation of AlyGa1yN/Al0.5Ga0.5N quantum dot properties for the design of ultraviolet emitters, Jpn. J. Appl. Phys., Volume 55 (2016) no. 5S

[22] B. Damilano; S. Vézian; J. Brault; B. Alloing; J. Massies Selective area sublimation: a simple top-down route for gan-based nanowire fabrication, Nano Lett., Volume 16 (2016) no. 3, pp. 1863-1868 (PMID: 26885770)

[23] M.A. Grinfeld Instability of the separation boundary between a nonhydrostatically stressed elastic body and a melt, Sov. Phys. Dokl., Volume 31 (1986), p. 831

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Instability-driven quantum dots

Jean-Noël Aqua; Thomas Frisch

C. R. Phys (2015)


Growth of a strained epitaxial film on a patterned substrate

Xianbin Xu; Jean-Noël Aqua; Thomas Frisch

C. R. Phys (2013)


Wetting by solid helium, a model system

Sébastien Balibar

C. R. Phys (2013)