Comptes Rendus
Physics-based plasticity model incorporating microstructure changes for severe plastic deformation
Comptes Rendus. Mécanique, Volume 347 (2019) no. 8, pp. 601-614.

During machining processes, materials undergo severe deformations that lead to different behavior than in the case of slow deformation. The microstructure changes, as a consequence, affect the materials properties and therefore influence the functionality of the component. Developing material models capable of capturing such changes is therefore critical to better understand the interaction process–materials. In this paper, we introduce a new physics model associating Mechanical Threshold Stress (MTS) with Dislocation Density (DD) models. The modeling and the experimental results of a series of large strain experiments on polycrystalline copper (OFHC) involving sequences of shear deformation and strain rate (varying from quasi-static to dynamic) are very similar to those observed in processes such as machining. The Kocks–Mecking model, using the mechanical threshold stress as an internal state variable, correlates well with experimental results and strain rate jump experiments. This model was compared to the well-known Johnson–Cook model that showed some shortcomings in capturing the stain jump. The results show a high effect of rate sensitivity of strain hardening at large strains. Coupling the mechanical threshold stress dislocation density (MTS–DD), material models were implemented in the Abaqus/Explicit FE code. The model shows potentialities in predicting an increase in dislocation density and a reduction in cell size. It could ideally be used in the modeling of machining processes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2019.06.001
Mots clés : Plasticity, Strain jump, Dislocation density, Mechanical threshold, Cell size, Machining
Ziyad Zenasni 1 ; Mohamed Haterbouch 1 ; Zoubir Atmani 2 ; Samir Atlati 3 ; Mohammed Zenasni 3 ; Khalid Nasri 3, 4 ; Omar Oussouaddi 5

1 Équipe de mécanique et ingénierie intégrée (M2I), ENSAM, Université Moulay-Ismaïl, Meknès, Morocco
2 Centre de recherche des Écoles de Saint-Cyr Coëtquidan, École militaire de Coëtquidan, 56380 Guer, France
3 Équipe de mécanique et calcul scientifique (EMCS), ENSA, Université Mohammed-Ier, Oujda, Morocco
4 SCD Laboratory, Faculty of Sciences, University Abdelmalek-Essaadi, 93030 Tetouan, Morocco
5 Laboratoire d'étude des matériaux avancés et applications (EM2A), Faculté des sciences, Université Moulay-Ismaïl, Meknès, Morocco
@article{CRMECA_2019__347_8_601_0,
     author = {Ziyad Zenasni and Mohamed Haterbouch and Zoubir Atmani and Samir Atlati and Mohammed Zenasni and Khalid Nasri and Omar Oussouaddi},
     title = {Physics-based plasticity model incorporating microstructure changes for severe plastic deformation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {601--614},
     publisher = {Elsevier},
     volume = {347},
     number = {8},
     year = {2019},
     doi = {10.1016/j.crme.2019.06.001},
     language = {en},
}
TY  - JOUR
AU  - Ziyad Zenasni
AU  - Mohamed Haterbouch
AU  - Zoubir Atmani
AU  - Samir Atlati
AU  - Mohammed Zenasni
AU  - Khalid Nasri
AU  - Omar Oussouaddi
TI  - Physics-based plasticity model incorporating microstructure changes for severe plastic deformation
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 601
EP  - 614
VL  - 347
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2019.06.001
LA  - en
ID  - CRMECA_2019__347_8_601_0
ER  - 
%0 Journal Article
%A Ziyad Zenasni
%A Mohamed Haterbouch
%A Zoubir Atmani
%A Samir Atlati
%A Mohammed Zenasni
%A Khalid Nasri
%A Omar Oussouaddi
%T Physics-based plasticity model incorporating microstructure changes for severe plastic deformation
%J Comptes Rendus. Mécanique
%D 2019
%P 601-614
%V 347
%N 8
%I Elsevier
%R 10.1016/j.crme.2019.06.001
%G en
%F CRMECA_2019__347_8_601_0
Ziyad Zenasni; Mohamed Haterbouch; Zoubir Atmani; Samir Atlati; Mohammed Zenasni; Khalid Nasri; Omar Oussouaddi. Physics-based plasticity model incorporating microstructure changes for severe plastic deformation. Comptes Rendus. Mécanique, Volume 347 (2019) no. 8, pp. 601-614. doi : 10.1016/j.crme.2019.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.06.001/

[1] A. Svoboda; D. Wedberg; L.E. Lindgren Simulation of metal cutting using a physically based plasticity model, Model. Simul. Mater. Sci. Eng., Volume 18 (2010) no. 7

[2] V. Lemiale; Y. Estrin; H.S. Kim; R. O'Donnell Grain refinement under high strain rate impact: a numerical approach, Comput. Mater. Sci., Volume 48 (2010) no. 1, pp. 124-132

[3] G. Rotella; D. Umbrello Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy, CIRP Ann., Volume 63 (2014) no. 1, pp. 69-72

[4] J.I. Castillo; D.J. Celentano; M.A. Cruchaga; C.M. García-Herrera Characterization of strain rate effects in sheet laser forming, C. R. Mecanique, Volume 346 (2018), pp. 794-805

[5] M.B. Bettaieb; F. Abed-Meraim Strain localization analysis for planar polycrystals based on bifurcation theory, C. R. Mecanique, Volume 346 (2018) no. 8, pp. 647-664

[6] N.S. Nguyen; H. Magoariec; B. Cambou Analysis of local behaviour in granular materials, C. R. Mecanique, Volume 342 (2014) no. 3, pp. 156-173

[7] U.S. Lindholm Some experiments with the split Hopkinson pressure bar, J. Mech. Phys. Solids, Volume 12 (1964) no. 5, pp. 317-335

[8] Symposium Held in San Antonio, TX, USA, 6–8 September 1967 (1968)

[9] Z.N. Mao; X.H. An; X.Z. Liao; J.T. Wang Opposite grain size dependence of strain rate sensitivity of copper at low vs high strain rates, Mater. Sci. Eng. A, Volume 738 (2018), pp. 430-438

[10] T. Zhang; K. Zhou; Z.Q. Chen Strain rate effect on plastic deformation of nanocrystalline copper investigated by molecular dynamics, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 648 (2015), pp. 23-30

[11] W. Chen; T. Kitamura; M. Feng Effect of geometrically necessary dislocations on inelastic strain rate for torsion stress relaxation of polycrystalline copper in micro scale, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 726 (2018), pp. 137-142

[12] S.-h. Huang; D.-y. Shu; C.-k. Hu; S.-f. Zhu Effect of strain rate and deformation temperature on strain hardening and softening behavior of pure copper, Trans. Nonferr. Met. Soc. China, Volume 26 (2016) no. 4, pp. 1044-1054

[13] B. Jiang; S. Zhang The effects of strain rate and grain size on nanocrystalline materials: a theoretical prediction, Mater. Des., Volume 87 (2015), pp. 49-52

[14] P.E. Senseny; J. Duffy; R.H. Hawley Experiments on strain rate history and temperature effects during the plastic deformation of close-packed metals, J. Appl. Mech., Volume 45 (1978) no. 1, pp. 60-66

[15] A.B. Tanner; D.L. McDowell Deformation temperature and strain rate sequence experiments on OFHC Cu, Int. J. Plast., Volume 15 (1999), pp. 375-399

[16] A.B. Tanner; R.D. McGinty; D.L. McDowell Modeling temperature and strain rate history effects on OFHC Cu, Int. J. Plast., Volume 15 (1999), pp. 575-603

[17] Y. Estrin; L.S. Toth; A. Molinari; Y. Bréchet A dislocation-based model for all hardening stages in larges strain deformation, Acta Mater., Volume 46 (1998), pp. 5509-5522

[18] Y. Estrin; H.S. Kim Modelling microstructure evolution toward ultrafine crystallinity produced by severe plastic deformation, J. Mater. Sci., Volume 42 (2007), pp. 1512-1516

[19] Y. Estrin; A. Molotnikov; C.H.J. Davies; R. Lapovok Strain gradient plasticity modelling of high-pressure torsion, J. Mech. Phys. Solids, Volume 56 (2008), pp. 1186-1202

[20] D.J. Lee; E.Y. Yoon; D.H. Ahn; B.H. Park; H.W. Park; L.J. Park; Y. Estrin; H.S. Kim Dislocation density-based finite element analysis of large strain deformation behavior of copper under high-pressure torsion, Acta Mater., Volume 76 (2014), pp. 281-293

[21] V. Lemiale; Y. Estrin; H.S. Kim; R. O'Donnell Grain refinement under high strain rate impact: a numerical approach, Comput. Mater. Sci., Volume 48 (2010), pp. 124-132

[22] M. Bacca; D.R. Hayhurst; R.M. McMeeking Continuous dynamic recrystallization during severe plastic deformation, Mech. Mater., Volume 90 (2015), pp. 148-156

[23] M. Zenasni Caractérisation expérimentale et modélisation du comportement du cuivre en grande déformation: sensibilité à la vitesse, University of Metz, France, 1992 (Ph.D. Thesis)

[24] G.R. Johnson; W.H. Cook The Hague, The Netherlands (1983), pp. 12-21

[25] P.S. Follansbee; U.F. Kocks A constitutive description of the deformation of copper based on the use of the mechanical threshold as an internal state variable, Acta Metall., Volume 36 (1988) no. 1, pp. 81-93

[26] W.H. Gourdin; D.H. Lassila Flow stress of OFE copper at strain rates from 10−3 to 104 s−1: grain-size effects and comparison to the mechanical threshold stress model, Acta Metall. Mater., Volume 39 (1991), pp. 2337-2348

[27] H. Mecking; U.F. Kocks Kinetics of flow and strain-hardening, Acta Metall., Volume 29 (1981), pp. 1865-1875

[28] J.R. Klepaczko; C.Y. Chiem On the sensitivity of f.c.c. metals, instantaneous rate sensitivity and rate sensitivity of strain Hardening, J. Mech. Phys. Solids, Volume 34 (1986), pp. 29-54

[29] J.R. Klepaczko Discussion of microstructural effects and their modeling at high rates of strain, Inst. Phys. Conf. Ser., Volume 102 (1988), p. 283

[30] O. Oussouaddi, J.R. Klepaczko, Analysis of transition between the isothermal and adiabatic deformation in the case of torsion of a tube, J. Phys. IV 1, 323–334.

[31] G.I. Taylor; C.F. Elam Bakerian lecture: The distortion of an aluminium crystal during a tensile test, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., Volume 102 (1923), pp. 643-667

[32] M. Muller; M. Zehetbauer; A. BorbCly; T. Ungcir Stage IV work hardening in cell forming materials, part I: features of the dislocation structure by X-ray line broadening, Scr. Mater., Volume 35 (1996), pp. 1461-1466

[33] D.L. Holt Dislocation cell formation in metals, J. Appl. Phys., Volume 41 (1970), p. 3197

[34] H. Ding; N. Shen; Y.C. Shin Modeling of grain refinement in aluminum and copper subjected to cutting, Comput. Mater. Sci., Volume 50 (2011) no. 10, pp. 3016-3025

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Identification methodology of a rate-sensitive constitutive law with mean field and full field modeling approaches for polycrystalline materials

Yann Charles; Chunping Zhang; Monique Gaspérini; ...

C. R. Méca (2020)


Multiscale modelling of indentation in FCC metals: From atomic to continuum

Hyung-Jun Chang; Marc Fivel; David Rodney; ...

C. R. Phys (2010)


Towards predictive simulations of machining

Lars-Erik Lindgren; Ales Svoboda; Dan Wedberg; ...

C. R. Méca (2016)