In this work, we have investigated numerically the disappearance of wrinkles from a tended membrane by the Asymptotic Numerical Method (ANM) using the finite-element DKT18. The ANM is a path-following technique that has been used to solve bifurcation problems. We show numerically the influence of the terms corresponding to the membrane displacement gradient in the Föppl–von Kármán (FvK) theory on the bifurcation curves in the case of a stretched elastic membrane. We will also study numerically, by using the ANM algorithm, the influence of the thickness and of the aspect ratio on the re-stabilization of a rectangular elastic membrane during stretching. The results obtained by our model are compared with those obtained using the industrial code ABAQUS.
Accepted:
Published online:
Siham Khalil 1; Youssef Belaasilia 1; Abdellah Hamdaoui 1; Bouazza Braikat 1; Mohammad Jamal 1; Noureddine Damil 1; Zitouni Azari 2
@article{CRMECA_2019__347_10_701_0, author = {Siham Khalil and Youssef Belaasilia and Abdellah Hamdaoui and Bouazza Braikat and Mohammad Jamal and Noureddine Damil and Zitouni Azari}, title = {ANM analysis of a wrinkled elastic thin membrane}, journal = {Comptes Rendus. M\'ecanique}, pages = {701--709}, publisher = {Elsevier}, volume = {347}, number = {10}, year = {2019}, doi = {10.1016/j.crme.2019.10.001}, language = {en}, }
TY - JOUR AU - Siham Khalil AU - Youssef Belaasilia AU - Abdellah Hamdaoui AU - Bouazza Braikat AU - Mohammad Jamal AU - Noureddine Damil AU - Zitouni Azari TI - ANM analysis of a wrinkled elastic thin membrane JO - Comptes Rendus. Mécanique PY - 2019 SP - 701 EP - 709 VL - 347 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2019.10.001 LA - en ID - CRMECA_2019__347_10_701_0 ER -
%0 Journal Article %A Siham Khalil %A Youssef Belaasilia %A Abdellah Hamdaoui %A Bouazza Braikat %A Mohammad Jamal %A Noureddine Damil %A Zitouni Azari %T ANM analysis of a wrinkled elastic thin membrane %J Comptes Rendus. Mécanique %D 2019 %P 701-709 %V 347 %N 10 %I Elsevier %R 10.1016/j.crme.2019.10.001 %G en %F CRMECA_2019__347_10_701_0
Siham Khalil; Youssef Belaasilia; Abdellah Hamdaoui; Bouazza Braikat; Mohammad Jamal; Noureddine Damil; Zitouni Azari. ANM analysis of a wrinkled elastic thin membrane. Comptes Rendus. Mécanique, Volume 347 (2019) no. 10, pp. 701-709. doi : 10.1016/j.crme.2019.10.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.10.001/
[1] Modélisation du plissage dans les structures membranaires, Eur. J. Comput. Mech., Volume 15 (2006) no. 1–3, pp. 143-154
[2] Manifested flatness predictions in thin strip cold rolling, Int. J. Mater. Forming, Volume 1 (2008) no. 1, pp. 339-342
[3] On the imperfection sensitivity of a coated elastic half-space, Proc. R. Soc. A, Volume 455 (1999), pp. 3285-3309
[4] Exact and asymptotic stability analyses of a coated elastic half-space, Int. J. Solids Struct., Volume 37 (2000) no. 22, pp. 3101-3119
[5] Herringbone buckling patterns of compressed thin films on compliant substrates, J. Appl. Mech., Volume 71 (2004) no. 5, pp. 597-603
[6] Nonlinear analyses of wrinkles in a film bonded to a compliant substrate, J. Mech. Phys. Solids, Volume 53 (2005) no. 9, pp. 2101-2118
[7] Kinetic wrinkling of an elastic film on a viscoelastic substrate, J. Mech. Phys. Solids, Volume 53 (2005) no. 1, pp. 63-89
[8] Wrinkling behavior of highly stretched rectangular elastic films via parametric global bifurcation, J. Nonlinear Sci., Volume 23 (2013) no. 5, pp. 777-805
[9] Lectures on numerical methods in bifurcation problems, Appl. Math., Volume 217 (1987), p. 50
[10] Buckling of stretched strips, Comput. Struct., Volume 78 (2000) no. 1–3, pp. 185-190
[11] Stability boundaries for wrinkling in highly stretched elastic sheets, J. Mech. Phys. Solids, Volume 97 (2016), pp. 260-274
[12] The Mullins effect in the wrinkling behavior of highly stretched thin films, J. Mech. Phys. Solids, Volume 119 (2018), pp. 417-427
[13] On the wrinkling and restabilization of highly stretched sheets, Int. J. Eng. Sci., Volume 136 (2019), pp. 1-16
[14] A modeling and resolution framework for wrinkling in hyperelastic sheets at finite membrane strain, J. Mech. Phys. Solids, Volume 124 (2019), pp. 446-470
[15] Méthode asymptotique numérique, Hermès Lavoisier, 2007
[16] Discussion about parameterization in the asymptotic numerical method: application to nonlinear elastic shells, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 25–28, pp. 1701-1709
[17] An asymptotic-numerical method to compute the postbuckling behaviour of elastic plates and shells, Int. J. Numer. Methods Eng., Volume 36 (1993) no. 8, pp. 1251-1277
[18] Asymptotic–numerical methods and Padé approximants for non-linear elastic structures, Int. J. Numer. Methods Eng., Volume 37 (1994) no. 7, pp. 1187-1213
[19] An asymptotic-numerical method to compute bifurcating branches, Int. J. Numer. Methods Eng., Volume 41 (1998) no. 8, pp. 1365-1389
[20] Modélisation des structures par éléments finis : Solides élastiques, Presses de l'Université Laval, Québec, Canada, 1990
[21] A path-following technique via an asymptotic-numerical method, Comput. Struct., Volume 53 (1994) no. 5, pp. 1181-1192
Cited by Sources:
Comments - Policy