Comptes Rendus
Plastic-damage-response analysis of glass/polyester filament wound structures: 3D meso-scale numerical modelling, experimental identification and validation
Comptes Rendus. Mécanique, Volume 348 (2020) no. 5, pp. 315-333.

The aim of this paper is to propose a theoretical meso-model describing the nonlinear behaviour of filament wound glass–polyester composite structures based on a progressive damage and failure analysis. This model has been implemented in the finite element modelling software Abaqus through the user material subroutine and then validated by experimental investigations. Numerical results have been compared with experimental data obtained from a set of tests on representative specimens using the strain measurement technique.

Published online:
DOI: 10.5802/crmeca.10
Keywords: Filament wound composite, Finite element modelling, Experimental validation, Progressive damage and failure analysis, Meso-model, Nonlinear behaviour
Hajer Boussetta 1, 2; Abdelouahed Laksimi 1; Hocine Kebir 1; Moez Beyaoui 2; Lassaad Walha 2; Mohamed Haddar 2

1 Technology University of Compiègne, Laboratoire Roberval UMR 6253, 60205 Compiègne cedex, France
2 University of Sfax, LA2MP, ENIS, Route Soukra km 3.5, 3038 Sfax, Tunisia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Hajer Boussetta and Abdelouahed Laksimi and Hocine Kebir and Moez Beyaoui and Lassaad Walha and Mohamed Haddar},
     title = {Plastic-damage-response analysis of glass/polyester filament wound structures: {3D~meso-scale} numerical modelling, experimental identification and validation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {315--333},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {5},
     year = {2020},
     doi = {10.5802/crmeca.10},
     language = {en},
AU  - Hajer Boussetta
AU  - Abdelouahed Laksimi
AU  - Hocine Kebir
AU  - Moez Beyaoui
AU  - Lassaad Walha
AU  - Mohamed Haddar
TI  - Plastic-damage-response analysis of glass/polyester filament wound structures: 3D meso-scale numerical modelling, experimental identification and validation
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 315
EP  - 333
VL  - 348
IS  - 5
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.10
LA  - en
ID  - CRMECA_2020__348_5_315_0
ER  - 
%0 Journal Article
%A Hajer Boussetta
%A Abdelouahed Laksimi
%A Hocine Kebir
%A Moez Beyaoui
%A Lassaad Walha
%A Mohamed Haddar
%T Plastic-damage-response analysis of glass/polyester filament wound structures: 3D meso-scale numerical modelling, experimental identification and validation
%J Comptes Rendus. Mécanique
%D 2020
%P 315-333
%V 348
%N 5
%I Académie des sciences, Paris
%R 10.5802/crmeca.10
%G en
%F CRMECA_2020__348_5_315_0
Hajer Boussetta; Abdelouahed Laksimi; Hocine Kebir; Moez Beyaoui; Lassaad Walha; Mohamed Haddar. Plastic-damage-response analysis of glass/polyester filament wound structures: 3D meso-scale numerical modelling, experimental identification and validation. Comptes Rendus. Mécanique, Volume 348 (2020) no. 5, pp. 315-333. doi : 10.5802/crmeca.10.

[1] F. Shen A filament-wound structure technology overview, Mater. Chem. Phys., Volume 42 (1995), pp. 96-100 | DOI

[2] P. LaneyUse of Composite Pipe Materials in the Transportation of Natural Gas”, Idaho National Engineering and Environmental Laboratory, Bechtel BWXT Idaho, LLC (2002)

[3] M. Mohitpour; H. Golshan; A. Murray (“Pipeline Design & Construction: A Practical Approach, Third Edition” ASME order number 802574, New York, 2007)

[4] V. G. Tsyss; S. M. Yu Simulating of the composite cylindrical shell of the pipe of the supply pipelines based on ANSYS package, Proc. Eng., Volume 152 (2016), pp. 332-338 | DOI

[5] V. Gunasegaran; R. Prashanth; M. Narayanan Experimental investigation and finite element analysis of filament wound GRP pipes for underground applications, Proc. Eng., Volume 64 (2013), pp. 1293-1301 | DOI

[6] S. Sulaiman; S. Borazjani; S. H. Tang Finite element analysis of filament-wound composite pressure vessel under internal pressure, IOP Conf. Ser. Mater. Sci. Eng., Volume 50 (2013), 012061 | DOI

[7] I. Vasović Strength Analysis of Filament-wound Composite Tubes, Hemijska industrija, 2010

[8] R. Roham; A. Ali. Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes, Comput. Mater. Sci., Volume 96 (2015), pp. 579-588

[9] P. F. Liu; L. J. Xing; Y. Zheng Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method, Compos. Part B, Volume 56 (2014), pp. 54-61 | DOI

[10] P. F. Liu; J. K. Chu; S. J. Hou; J. Y. Zheng Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: a review, Renew. Sustain. Energy Rev., Volume 16 (2012) no. 4, pp. 1817-1827 | DOI

[11] H. Boussetta; M. Beyaoui; A. Laksimi; L. Walha; M. Haddar Study of the filament wound glass/polyester composite damage behaviour by acoustic emission data unsupervised learning, Appl. Acoust., Volume 127 (2017), pp. 175-183 | DOI

[12] ISO Plastics Piping Systems – Glass-Reinforced Thermosetting Plastics (GRP) Pipes – Test Methods for the Determination of the Initial Longitudinal Tensile Strength, published in ISO Standards, no ISO 8513, 2016 | DOI

[13] ASTM Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe, published in ASTM Standards series, no D2290 | DOI

[14] E. J. Barbero; P. Lonetti An inelastic damage model for fiber reinforced laminates, J. Compos. Mater., Volume 36 (2002) no. 8, pp. 941-962 | DOI

[15] L. M. Kachanov On time to rupture in creep conditions (in russian), Izv. Akad. Nauk SSSR, Otdelenie Tekhnicheskikh Nauk, Volume 8 (1958), pp. 26-31

[16] Y. N. Rabotnov Creep Rupture, Applied Mechanics (M. Hetenyi; H. Vincenti, eds.), Stanford University, 1968, pp. 342-349

[17] S. W. Tsai; E. M. Wu A general theory of strength for anisotropic materials, J. Compos. Mater., Volume 5 (1971), pp. 58-80 | DOI

[18] C. L. Tsai; I. M. Daniel Determination of in-plane and out-of-plane shear moduli of composite materials, Exp. Mech., Volume 30 (1990) no. 3, pp. 295-299 | DOI

[19] S. Sridharan Delamination Behaviour of Composites, Woodhead Publishing, 2008

[20] G. I. Barenblatt The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., Volume 7 (1962), pp. 55-129 | DOI

[21] Abaqus (Analysis User’s Manual version 6.12; “Defining the constitutive response of cohesive elements using a traction-separation description” section 32.5.6, , ABAQUS, Inc. 2012.)

[22] M. Benzeggagh; M. Kenane Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Compos. Sci. Technol., Volume 56 (1996), pp. 439-449 | DOI

[23] J. R. Rice Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Sol., Volume 16 (1968), pp. 1-12 | DOI | Zbl

[24] G. R. Irwin Fracture, Handbuch der Physik (S. Flügge, ed.), Volume 6, Springer, Berlin, 1957, pp. 551-590

[25] A. A. Griffith The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. Lond. A, Volume 221 (1921), pp. 163-198

[26] Abaqus (Analysis User’s Manual Volume V: Prescribed Conditions, Constraints & Interactions,version 6.12, ABAQUS, Inc. 2012)

Cited by Sources:

Articles of potential interest

Cracking behavior and local stress characteristics around the opening surrounded by two intermittent joints: experiment and numerical simulation

Yuan-Chao Zhang; Yu-Jing Jiang; Xiao-Jie Tang; ...

C. R. Méca (2020)

Nanomechanics serving polymer-based composite research

Thomas Pardoen; Nathan Klavzer; Sarah Gayot; ...

C. R. Phys (2021)

Fracture and permeability of concrete and rocks

Gilles Pijaudier-Cabot

C. R. Phys (2020)