The aim of this paper is to propose a theoretical meso-model describing the nonlinear behaviour of filament wound glass–polyester composite structures based on a progressive damage and failure analysis. This model has been implemented in the finite element modelling software Abaqus through the user material subroutine and then validated by experimental investigations. Numerical results have been compared with experimental data obtained from a set of tests on representative specimens using the strain measurement technique.
Accepted:
Published online:
Hajer Boussetta 1, 2; Abdelouahed Laksimi 1; Hocine Kebir 1; Moez Beyaoui 2; Lassaad Walha 2; Mohamed Haddar 2
@article{CRMECA_2020__348_5_315_0, author = {Hajer Boussetta and Abdelouahed Laksimi and Hocine Kebir and Moez Beyaoui and Lassaad Walha and Mohamed Haddar}, title = {Plastic-damage-response analysis of glass/polyester filament wound structures: {3D~meso-scale} numerical modelling, experimental identification and validation}, journal = {Comptes Rendus. M\'ecanique}, pages = {315--333}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {5}, year = {2020}, doi = {10.5802/crmeca.10}, language = {en}, }
TY - JOUR AU - Hajer Boussetta AU - Abdelouahed Laksimi AU - Hocine Kebir AU - Moez Beyaoui AU - Lassaad Walha AU - Mohamed Haddar TI - Plastic-damage-response analysis of glass/polyester filament wound structures: 3D meso-scale numerical modelling, experimental identification and validation JO - Comptes Rendus. Mécanique PY - 2020 SP - 315 EP - 333 VL - 348 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmeca.10 LA - en ID - CRMECA_2020__348_5_315_0 ER -
%0 Journal Article %A Hajer Boussetta %A Abdelouahed Laksimi %A Hocine Kebir %A Moez Beyaoui %A Lassaad Walha %A Mohamed Haddar %T Plastic-damage-response analysis of glass/polyester filament wound structures: 3D meso-scale numerical modelling, experimental identification and validation %J Comptes Rendus. Mécanique %D 2020 %P 315-333 %V 348 %N 5 %I Académie des sciences, Paris %R 10.5802/crmeca.10 %G en %F CRMECA_2020__348_5_315_0
Hajer Boussetta; Abdelouahed Laksimi; Hocine Kebir; Moez Beyaoui; Lassaad Walha; Mohamed Haddar. Plastic-damage-response analysis of glass/polyester filament wound structures: 3D meso-scale numerical modelling, experimental identification and validation. Comptes Rendus. Mécanique, Volume 348 (2020) no. 5, pp. 315-333. doi : 10.5802/crmeca.10. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.10/
[1] A filament-wound structure technology overview, Mater. Chem. Phys., Volume 42 (1995), pp. 96-100 | DOI
[2] Use of Composite Pipe Materials in the Transportation of Natural Gas”, Idaho National Engineering and Environmental Laboratory, Bechtel BWXT Idaho, LLC (2002)
“[3] Pipeline Design & Construction: A Practical Approach, Third Edition” ASME order number 802574, New York, 2007)
(“[4] Simulating of the composite cylindrical shell of the pipe of the supply pipelines based on ANSYS package, Proc. Eng., Volume 152 (2016), pp. 332-338 | DOI
[5] Experimental investigation and finite element analysis of filament wound GRP pipes for underground applications, Proc. Eng., Volume 64 (2013), pp. 1293-1301 | DOI
[6] Finite element analysis of filament-wound composite pressure vessel under internal pressure, IOP Conf. Ser. Mater. Sci. Eng., Volume 50 (2013), 012061 | DOI
[7] Strength Analysis of Filament-wound Composite Tubes, Hemijska industrija, 2010
[8] Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes, Comput. Mater. Sci., Volume 96 (2015), pp. 579-588
[9] Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method, Compos. Part B, Volume 56 (2014), pp. 54-61 | DOI
[10] Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: a review, Renew. Sustain. Energy Rev., Volume 16 (2012) no. 4, pp. 1817-1827 | DOI
[11] Study of the filament wound glass/polyester composite damage behaviour by acoustic emission data unsupervised learning, Appl. Acoust., Volume 127 (2017), pp. 175-183 | DOI
[12] Plastics Piping Systems – Glass-Reinforced Thermosetting Plastics (GRP) Pipes – Test Methods for the Determination of the Initial Longitudinal Tensile Strength, published in ISO Standards, no ISO 8513, 2016 | DOI
[13] Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe, published in ASTM Standards series, no D2290 | DOI
[14] An inelastic damage model for fiber reinforced laminates, J. Compos. Mater., Volume 36 (2002) no. 8, pp. 941-962 | DOI
[15] On time to rupture in creep conditions (in russian), Izv. Akad. Nauk SSSR, Otdelenie Tekhnicheskikh Nauk, Volume 8 (1958), pp. 26-31
[16] Creep Rupture, Applied Mechanics (M. Hetenyi; H. Vincenti, eds.), Stanford University, 1968, pp. 342-349
[17] A general theory of strength for anisotropic materials, J. Compos. Mater., Volume 5 (1971), pp. 58-80 | DOI
[18] Determination of in-plane and out-of-plane shear moduli of composite materials, Exp. Mech., Volume 30 (1990) no. 3, pp. 295-299 | DOI
[19] Delamination Behaviour of Composites, Woodhead Publishing, 2008
[20] The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., Volume 7 (1962), pp. 55-129 | DOI
[21]
(Analysis User’s Manual version 6.12; “Defining the constitutive response of cohesive elements using a traction-separation description” section 32.5.6, , ABAQUS, Inc. 2012.)[22] Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Compos. Sci. Technol., Volume 56 (1996), pp. 439-449 | DOI
[23] Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Sol., Volume 16 (1968), pp. 1-12 | DOI | Zbl
[24] Fracture, Handbuch der Physik (S. Flügge, ed.), Volume 6, Springer, Berlin, 1957, pp. 551-590
[25] The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. Lond. A, Volume 221 (1921), pp. 163-198
[26] Analysis User’s Manual Volume V: Prescribed Conditions, Constraints & Interactions,version 6.12, ABAQUS, Inc. 2012)
(Cited by Sources:
Comments - Policy