Received:

Revised:

Accepted:

Published online:

DOI:
10.5802/crmeca.11

Revised:

Accepted:

Published online:

Keywords:
Composite homogenization, Stiffness formulation, Multiple inclusions

Author's affiliations:

Ilige S. Hage ^{1};
Ramsey F. Hamade ^{2}

License: CC-BY 4.0

Copyrights: The authors retain unrestricted copyrights and publishing rights

@article{CRMECA_2020__348_2_113_0, author = {Ilige S. Hage and Ramsey F. Hamade}, title = {Experimentally validated combined stiffness expression for finite domain containing multiple inclusions}, journal = {Comptes Rendus. M\'ecanique}, pages = {113--135}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {2}, year = {2020}, doi = {10.5802/crmeca.11}, language = {en}, }

TY - JOUR AU - Ilige S. Hage AU - Ramsey F. Hamade TI - Experimentally validated combined stiffness expression for finite domain containing multiple inclusions JO - Comptes Rendus. Mécanique PY - 2020 SP - 113 EP - 135 VL - 348 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crmeca.11 LA - en ID - CRMECA_2020__348_2_113_0 ER -

%0 Journal Article %A Ilige S. Hage %A Ramsey F. Hamade %T Experimentally validated combined stiffness expression for finite domain containing multiple inclusions %J Comptes Rendus. Mécanique %D 2020 %P 113-135 %V 348 %N 2 %I Académie des sciences, Paris %R 10.5802/crmeca.11 %G en %F CRMECA_2020__348_2_113_0

Ilige S. Hage; Ramsey F. Hamade. Experimentally validated combined stiffness expression for finite domain containing multiple inclusions. Comptes Rendus. Mécanique, Volume 348 (2020) no. 2, pp. 113-135. doi : 10.5802/crmeca.11. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.11/

[1] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, Volume 241 (1957), pp. 376-396 | MR | Zbl

[2] Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., Volume 21 (1973), pp. 571-574 | DOI

[3] The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites, Polym. Compos., Volume 5 (1984), pp. 327-333 | DOI

[4] Stiffness of aligned wood fiber composites: effect of microstructure and phase properties, J. Compos. Mater., Volume 42 (2008), pp. 2377-2405 | DOI

[5] Micromechanics of Heterogeneous Materials, Springer Science & Business Media, 2007 | Zbl

[6] Asymptotic homogenization of composite materials and structures, Appl. Mech. Rev., Volume 62 (2009) (30802) | DOI

[7] Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone, Biomech. Model. Mechanobiol., Volume 11 (2012), pp. 883-901 | DOI

[8] A new homogenization method based on a simplified strain gradient elasticity theory, Acta Mech., Volume 225 (2014), pp. 1075-1091 | DOI | MR | Zbl

[9] An experimentally validated combined stiffness formulation for a finite domain considering volume fraction, shape, orientation, and location of a single inclusion, Int. J. Appl. Mech., Volume 10 (2018) (1850011) | DOI

[10] The Eshelby tensors in a finite spherical domain—Part II: applications to homogenization, J. Appl. Mech., Volume 74 (2007), pp. 784-797 | DOI

[11] A novel formulation for the exterior-point eshelby’s tensor of an ellipsoidal inclusion, J. Appl. Mech., Volume 66 (1999), pp. 570-574 | DOI

[12] Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: micromechanics-based formulation, Int. J. Solids Struct., Volume 38 (2001), pp. 183-201 | DOI | Zbl

[13] Elastoplastic modeling of metal matrix composites containing randomly located and oriented spheroidal particles, J. Appl. Mech., Volume 71 (2004), pp. 774-785 | DOI | Zbl

[14] Multiscale modeling of inclusions and precipitation hardening in metal matrix composites: application to advanced high-strength steels, J. Nanomech. Micromech., Volume 3 (2012), pp. 24-33 | DOI

[15] Micromechanics of Defects in Solids, Kluwer, 1987

[16] On the six-dimensional orthogonal tensor representation of the rotation in three dimensions: a simplified approach, Mech. Mater., Volume 41 (2009), pp. 951-953 | DOI

[17] The mathematics of the physical properties of crystals, Bell Syst. Tech. J., Volume 22 (1943), pp. 1-72 | DOI | MR

[18] Explicit expressions for bounds for the effective moduli of multi-phased composites by the generalized self-consistent method, Compos. Sci. Technol., Volume 59 (1999), pp. 1691-1699 | DOI

[19] A new approach to the application of Mori–Tanaka’s theory in composite materials, Mech. Mater., Volume 6 (1987), pp. 147-157 | DOI

[20] Highly active bifunctional cobalt-salen complexes for the synthesis of poly(ester-block-carbonate) copolymer via terpolymerization of carbon dioxide, propylene oxide, and norbornene anhydride isomer: roles of anhydride conformation consideration, J. Polym. Sci. A, Volume 52 (2014), pp. 789-795 | DOI

[21] Theoretische studien über die elasticitätsverhältnisse der krystalle, Königliche Gesellschaft der Wissenschaften zu Göttingen, 1887

[22] A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140 | DOI | MR | Zbl

[23] n-Phase micromechanical framework for the conductivity and elastic modulus of particulate composites: design to microencapsulated phase change materials (MPCMs)-cementitious composites, Mater. Des., Volume 145 (2018), pp. 108-115 | DOI

[24] Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone, Int. J. Rock Mech. Min. Sci., Volume 84 (2016), pp. 95-104 | DOI

[25] A general micromechanical framework of effective moduli for the design of nonspherical nano-and micro-particle reinforced composites with interface properties, Mater. Des., Volume 127 (2017), pp. 162-172 | DOI

[26] Elastic properties of particle-reinforced composites containing nonspherical particles of high packing density and interphase: DEM–FEM simulation and micromechanical theory, Comput. Methods Appl. Mech. Eng., Volume 326 (2017), pp. 122-143 | DOI | MR | Zbl

*Cited by Sources: *

Articles of potential interest

Polycrystal thermo-elasticity revisited: theory and applications

Carlos N. Tomé; Ricardo A. Lebensohn

C. R. Méca (2020)

Nanomechanics serving polymer-based composite research

Thomas Pardoen; Nathan Klavzer; Sarah Gayot; ...

C. R. Phys (2021)

Nguyen Thai Dung; Le Minh Thai; Tran Van Ke; ...

C. R. Méca (2022)