We study the steady-state and transient responses of a second-order elastic plate by implementing an asymptotic analysis of the three-dimensional equations with respect to two geometric characteristics seen as parameters: the thickness of the plate and an inner material length. Depending on their ratio, four different models arise. Conditions under which Reissner–Mindlin kinematics may appear are discussed while the influence of crystalline symmetries is studied. The transient situation is solved through Trotter’s theory of approximation of semi-groups of operators acting on variable spaces.
Accepted:
Published online:
Christian Licht 1, 2; Thibaut Weller 2
@article{CRMECA_2022__350_G2_325_0, author = {Christian Licht and Thibaut Weller}, title = {Asymptotic analysis of plates in static and dynamic strain gradient elasticity}, journal = {Comptes Rendus. M\'ecanique}, pages = {325--342}, publisher = {Acad\'emie des sciences, Paris}, volume = {350}, year = {2022}, doi = {10.5802/crmeca.118}, language = {en}, }
TY - JOUR AU - Christian Licht AU - Thibaut Weller TI - Asymptotic analysis of plates in static and dynamic strain gradient elasticity JO - Comptes Rendus. Mécanique PY - 2022 SP - 325 EP - 342 VL - 350 PB - Académie des sciences, Paris DO - 10.5802/crmeca.118 LA - en ID - CRMECA_2022__350_G2_325_0 ER -
Christian Licht; Thibaut Weller. Asymptotic analysis of plates in static and dynamic strain gradient elasticity. Comptes Rendus. Mécanique, Volume 350 (2022), pp. 325-342. doi : 10.5802/crmeca.118. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.118/
[1] La méthode des puissances virtuelles en mécanique des milieux continus premiere partie : théorie du second gradient, J. de Méc., Volume 12 (1973), pp. 235-274 | Zbl
[2] Mathematical Elasticity. Volume II: Theory of Plates, North-Holland, Amsterdam, The Netherlands, 1997
[3] An asymptotic strain gradient Reissner–Mindlin plate model, Meccanica, Volume 48 (2013), pp. 2007-2018 | DOI | MR | Zbl
[4] Matrix representations for 3D strain-gradient elasticity, J. Mech. Phys. Solids, Volume 61 (2013), pp. 1202-1223 | DOI | MR | Zbl
[5] A justification of the Reissner–Mindlin plate theory through variational convergence, Anal. Appl., Volume 5 (2007), pp. 165-182 | DOI | Zbl
[6] Asymptotic modeling of piezoelectric plates with electric field gradient, C. R. Méc., Volume 340 (2012), pp. 405-410
[7] Modeling of linearly electromagneto-elastic thin plates, C. R. Méc., Volume 335 (2007), pp. 201-206 | Zbl
[8] On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure, Eur. J. Mech. A: Solids, Volume 69 (2017), pp. 179-191 | DOI | MR
[9] Transient response of a thin linearly elastic plate with Norton or Tresca friction, Asymptot. Anal., Volume 128 (2022) no. 4, pp. 555-570 | Zbl
[10] Approximation of semi-groups of operators, Pac. J. Math., Volume 28 (1958), pp. 897-919 | MR | Zbl
[11] Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media, Discrete Contin. Dyn. Syst., Volume 12 (2019), pp. 1709-1741 | MR | Zbl
[12] Asymptotic modeling of thin piezoelectric plates, Ann. Solid Struct. Mech., Volume 1 (2010), pp. 173-188 | DOI
Cited by Sources:
Comments - Policy