Comptes Rendus
Note
Development of a polar-based method for the calculation of the leeway of floating objects drifting at sea
[Développement d’une méthode de calcul de la dérive des objet flottants en mer basée sur l’utilisation de polaires]
Comptes Rendus. Mécanique, Volume 350 (2022), pp. 431-450.

La localisation des objets flottants et des personnes à la dérive est une part importante des missions de sauvetage en mer, il est dès lors important de disposer d’outils efficaces pour déterminer la trajectoire de tels objets. La méthode actuellement employée présente certaines limitations et peut s’avérer imprécise. Le développement d’une nouvelle méthode basée sur l’utilisation de polaires de coefficients aérodynamiques calculés à l’aide d’outils de mécanique des fluides numérique est considéré en tant qu’alternative. Cette approche est mise en œuvre pour un conteneur standard. Ces premiers résultats bien que perfectibles semblent prometteurs et témoignent du potentiel de cette approche.

Localisation of drifting objects and lost at sea persons is an integral part of search and rescue (SAR) missions. It is thus important to possess effective tools to determine the trajectory of such objects. The method currently used presents some limitations and may prove imprecise in certain cases. The development of a new method based on CFD-generated drag and lift polars is therefore investigated as an alternative. This approach is implemented in a simplified manner for a 40-feet container, and the results compared to the method currently in use. These results, though improvable, appear promising and prove the potential of this approach.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.125
Keywords: CFD, Leeway, Leeway drift, Polar curve, Search and rescue
Mot clés : MFN, Dérive, Méthode du Leeway, Polaires, Recherche et sauvetage
Thomas Ackermann 1 ; Sami Kaidi 2 ; Philippe Sergent 2 ; Emmanuel Lefrançois 3

1 CEREMA Risques, Eau et Mer, Equipe Projet Recherche Hydraulique pour l’Aménagement, Margny-lès-Compiègne, France
2 CEREMA EMF, Compiègne, France
3 UTC, Compiègne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2022__350_G3_431_0,
     author = {Thomas Ackermann and Sami Kaidi and Philippe Sergent and Emmanuel Lefran\c{c}ois},
     title = {Development of a polar-based method for the calculation of the leeway of floating objects drifting at sea},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {431--450},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {350},
     year = {2022},
     doi = {10.5802/crmeca.125},
     language = {en},
}
TY  - JOUR
AU  - Thomas Ackermann
AU  - Sami Kaidi
AU  - Philippe Sergent
AU  - Emmanuel Lefrançois
TI  - Development of a polar-based method for the calculation of the leeway of floating objects drifting at sea
JO  - Comptes Rendus. Mécanique
PY  - 2022
SP  - 431
EP  - 450
VL  - 350
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.125
LA  - en
ID  - CRMECA_2022__350_G3_431_0
ER  - 
%0 Journal Article
%A Thomas Ackermann
%A Sami Kaidi
%A Philippe Sergent
%A Emmanuel Lefrançois
%T Development of a polar-based method for the calculation of the leeway of floating objects drifting at sea
%J Comptes Rendus. Mécanique
%D 2022
%P 431-450
%V 350
%I Académie des sciences, Paris
%R 10.5802/crmeca.125
%G en
%F CRMECA_2022__350_G3_431_0
Thomas Ackermann; Sami Kaidi; Philippe Sergent; Emmanuel Lefrançois. Development of a polar-based method for the calculation of the leeway of floating objects drifting at sea. Comptes Rendus. Mécanique, Volume 350 (2022), pp. 431-450. doi : 10.5802/crmeca.125. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.125/

[1] P. Daniel Le modèle MOTHY et ses évolutions, Journée de discussions techniques du Cedre, Cedre, Brest, 2019 http://wwz.cedre.fr/content/download/10220/file/pierre-daniel-mothy-2019.pdf (fr)

[2] L. E. Hillier Validating and improving the Canadian coast guard search and rescue planning program (CANSARP) ocean drift theory, 2008 Master’s thesis, Memorial University of Newfoundland, https://research.library.mun.ca/9414/ (accessed 25 October 2021)

[3] T. M. Kratzke; L. D. Stone; J. R. Frost Search and rescue optimal planning system, 2010 13th International Conference on Information Fusion, IEEE, Edinburgh, 2010 (en), http://ieeexplore.ieee.org/document/5712114/ (accessed 22 October 2021) | DOI

[4] Ø. Breivik; A. A. Allen; C. Maisondieu; J. C. Roth Wind-induced drift of objects at sea: The leeway field method, Appl. Ocean Res., Volume 33 (2011) no. 2, pp. 100-109 (en), https://www.sciencedirect.com/science/article/abs/pii/S014111871100006X (accessed 12 February 2020) | DOI

[5] Ø. Breivik; A. A. Allen; C. Maisondieu; M. Olagnon Advances in search and rescue at sea, Ocean Dyn., Volume 63 no. 1, pp. 83-88 (en), http://link.springer.com/10.1007/s10236-012-0581-1 (accessed 26 August 2021) | DOI

[6] A. A. Allen; J. V. Plourde Review of leeway: field experiments and implementation (1999) https://apps.dtic.mil/sti/citations/ADA366414 (accessed 19 April 2022) (Technical report)

[7] A. A. Allen Leeway divergence (2005) https://apps.dtic.mil/sti/citations/ADA435435 (accessed 19 April 2022) (Technical report)

[8] Ø. Breivik; A. A. Allen; C. Maisondieu; J.-C. Roth; B. Forest The leeway of shipping containers at different immersion levels, Ocean Dyn., Volume 62 (2012) no. 5, pp. 741-752 (en), http://link.springer.com/10.1007/s10236-012-0522-z (accessed 12 February 2020) | DOI

[9] C. Maisondieu; B. Forest Container drift assessment - iroise sea experiment. sar-drift project, 2008 https://archimer.ifremer.fr/doc/00238/34970/ (Campaign Report ERT/HO 08-R04HO08, Ifremer)

[10] Ø. Breivik; A. A. Allen An operational search and rescue model for the Norwegian Sea and the North Sea, J. Mar. Syst., Volume 69 (2008) no. 1–2, pp. 99-113 (en), http://arxiv.org/abs/1111.1102 (accessed 16 March 2021) | DOI

[11] A. Allen; J.-C. Roth; C. Maisondieu; O. Breivik; B. Forest Field determination of the leeway of drifting objects (2010) no. 17 https://archimer.ifremer.fr/doc/00254/36492/ (accessed 19 April 2022) (Technical report)

[12] P. Daniel; G. Jan; F. Cabioc’h; Y. Landau; E. Loiseau Drift modeling of cargo containers, Spill Sci. Technol. Bull., Volume 7 (2002) no. 5–6, pp. 279-288 (en), https://www.sciencedirect.com/science/article/abs/pii/S1353256102000750 (accessed 12 February 2020) | DOI

[13] F. Cabioc’h; Y. Aoustin Criteria for decision making regarding response to accidentally spilled chemicals in packaged form: Hydrodynamic aspects, Spill Sci. Technol. Bull., Volume 4 (1997) no. 1, pp. 7-15 (en), https://www.sciencedirect.com/science/article/abs/pii/S1353256197000297 (accessed 09 July 2020) | DOI

[14] B. A. Brushett; A. A. Allen; V. C. Futch; B. A. King; C. J. Lemckert Determining the leeway drift characteristics of tropical Pacific Island craft, Appl. Ocean Res., Volume 44 (2014), pp. 92-101 (en), https://linkinghub.elsevier.com/retrieve/pii/S0141118713001004 | DOI

[15] M. Le Boulluec; B. Forest; E. Mansuy Steady drift of floating objects in waves: experimental and numerical investigation, Ocean Engineering; Offshore Renewable Energy, Volume 4, ASMEDC, Estoril, Portugal, 2008, pp. 321-328 (en), https://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2008/48210/321/324969

[16] Q. Li; Y. Nihei; T. Nakashima; Y. Ikeda A study on the performance of cascade hard sails and sail-equipped vessels, Ocean Eng., Volume 98 (2015), pp. 23-31 (en), https://www.sciencedirect.com/science/article/abs/pii/S0029801815000268 (accessed 08 November 2021) | DOI

[17] L. Thiebaud; A.-L. Tiberi-Wadier; Y. Beaudouin Analyse de données de vent en Europe pour caractériser le potentiel de l’éolien en mer, XVèmes Journées Nationales Génie Côtier - Génie Civil, Paralia CFL, La Rochelle, 2018 (fr), https://www.paralia.fr/jngcgc/15_67_thiebaud.pdf (accessed 17 August 2020) | DOI

[18] F. Ardhuin; L. Marié; N. Rascle; P. Forget; A. Roland Observation and estimation of lagrangian, stokes, and Eulerian currents induced by wind and waves at the sea surface, J. Phys. Oceanogr., Volume 39 (2009) no. 11, pp. 2820-2838 (en), https://journals.ametsoc.org/view/journals/phoc/39/11/2009jpo4169.1.xml (accessed 09 July 2020) | DOI

[19] J. Röhrs; K. H. Christensen; L. R. Hole; G. Broström; M. Drivdal; S. Sundby Observation-based evaluation of surface wave effects on currents and trajectory forecasts, Ocean Dyn., Volume 62 (2012) no. 10–12, pp. 1519-1533 (en), http://link.springer.com/10.1007/s10236-012-0576-y (accessed 16 September 2021) | DOI

[20] K. E. Kenyon Stokes drift for random gravity waves, J. Geophys. Res., Volume 74 (1969) no. 28, pp. 6991-6994 (en), https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC074i028p06991 (accessed 07 September 2020) | DOI

[21] S. Kaidi; H. Smaoui; P. Sergent CFD investigation of mutual interaction between hull, propellers, and rudders for an inland container ship in deep, very deep, shallow, and very shallow waters, J. Waterw. Port, Coast. Ocean Eng., Volume 144 (2018) no. 6, 04018017 (en), https://www.researchgate.net/publication/326982505_CFD_Investigation_of_Mutual_Interaction_between_Hull_Propellers_and_Rudders_for_an_Inland_Container_Ship_in_Deep_Very_Deep_Shallow_and_Very_Shallow_Waters | DOI

[22] I. Razgallah; S. Kaidi; H. Smaoui; P. Sergent The impact of free surface modelling on hydrodynamic forces for ship navigating in inland waterways: water depth, drift angle, and ship speed effect, J. Mar. Sci. Technol., Volume 24 (2019) no. 2, pp. 620-641 (en), http://link.springer.com/10.1007/s00773-018-0566-y | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Henry Dale and the discovery of acetylcholine

E.M. Tansey

C. R. Biol (2006)


FSI—vibrations of immersed cylinders. Simulations with the engineering open-source code TrioCFD. Test cases and experimental comparisons

Domenico Panunzio; Maria-Adela Puscas; Romain Lagrange

C. R. Méca (2022)


Multi-objective assessment of hydrological model performances using Nash–Sutcliffe and Kling–Gupta efficiencies on a worldwide large sample of watersheds

Thibault Mathevet; Nicolas Le Moine; Vazken Andréassian; ...

C. R. Géos (2023)