Comptes Rendus
Short paper
FSI—vibrations of immersed cylinders. Simulations with the engineering open-source code TrioCFD. Test cases and experimental comparisons
Comptes Rendus. Mécanique, Volume 350 (2022), pp. 451-476.

In this paper, we assess the capabilities of the Arbitrary Lagrangian–Eulerian (ALE) method implemented in the open-source code TrioCFD to tackle down two fluid–structure interaction problems involving moving boundaries. To test the code, we first consider the bi-dimensional case of two coaxial cylinders moving in a viscous fluid. We show that the two fluid forces acting on the cylinders are in phase opposition, with amplitude and phase that only depend on the Stokes number, the dimensionless separation distance and the Keulegan–Carpenter number. Throughout a detailed parametric study, we show that the self (resp. cross) added mass and damping coefficients decrease (resp. increase) with the Stokes number and the separation distance. Our numerical results are in perfect agreement with the theoretical predictions of the literature, thereby validating the robustness of the ALE method implemented in TrioCFD. Then, we challenge the code by considering the case of a vibrating cylinder located in the central position of a square tube bundle. In parallel to the numerical investigations, we also present a new experimental setup for the measurement of the added coefficient, using the direct method introduced by Tanaka. The numerical predictions for the self-added coefficients are shown to be in very good agreement with a theoretical estimation used as a reference by engineers. A good agreement with the experimental results is also obtained for moderate and large Stokes numbers, whereas an important deviation due to parasitic frequencies in the experimental setup appears for low Stokes number. Still, this study clearly confirms that the ALE method implemented in TrioCFD is particularly efficient in solving fluid–structure interaction problems. As an open-source code, and given its ease of use and its flexibility, we believe that TrioCFD is thus perfectly adapted to engineers who need simple numerical tools to tackle down complex industrial problems.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.126
Keywords: Vibration, Fluid–structure interaction, Added mass, Added damping, Stokes number, ALE method, TrioCFD

Domenico Panunzio 1; Maria-Adela Puscas 2; Romain Lagrange 1

1 Université Paris-Saclay, CEA, Service d’Etudes Mécaniques et Thermiques, 91191, Gif-sur-Yvette, France
2 Université Paris-Saclay, CEA, Service de Thermohydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_G3_451_0,
     author = {Domenico Panunzio and Maria-Adela Puscas and Romain Lagrange},
     title = {FSI{\textemdash}vibrations of immersed cylinders. {Simulations} with the engineering open-source code {TrioCFD.} {Test} cases and experimental comparisons},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {451--476},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {350},
     year = {2022},
     doi = {10.5802/crmeca.126},
     language = {en},
}
TY  - JOUR
AU  - Domenico Panunzio
AU  - Maria-Adela Puscas
AU  - Romain Lagrange
TI  - FSI—vibrations of immersed cylinders. Simulations with the engineering open-source code TrioCFD. Test cases and experimental comparisons
JO  - Comptes Rendus. Mécanique
PY  - 2022
SP  - 451
EP  - 476
VL  - 350
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.126
LA  - en
ID  - CRMECA_2022__350_G3_451_0
ER  - 
%0 Journal Article
%A Domenico Panunzio
%A Maria-Adela Puscas
%A Romain Lagrange
%T FSI—vibrations of immersed cylinders. Simulations with the engineering open-source code TrioCFD. Test cases and experimental comparisons
%J Comptes Rendus. Mécanique
%D 2022
%P 451-476
%V 350
%I Académie des sciences, Paris
%R 10.5802/crmeca.126
%G en
%F CRMECA_2022__350_G3_451_0
Domenico Panunzio; Maria-Adela Puscas; Romain Lagrange. FSI—vibrations of immersed cylinders. Simulations with the engineering open-source code TrioCFD. Test cases and experimental comparisons. Comptes Rendus. Mécanique, Volume 350 (2022), pp. 451-476. doi : 10.5802/crmeca.126. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.126/

[1] S. B. Furber; J. E. Ffowcs Williams Is the Weis–Fogh principle exploitable in turbomachinery?, J. Fluid Mech., Volume 94 (1979), pp. 519-540 | DOI | Zbl

[2] S. S. Chen Dynamics of heat exchanger tube banks, J. Fluids Eng., Volume 99 (1977), pp. 462-469 | DOI

[3] R. Lagrange; P. Piteau; X. Delaune; J. Antunes Fluid-elastic coefficients in single phase cross flow: Dimensional analysis, direct and indirect experimental methods, Pressure Vessels and Piping Conference (Fluid–Structure Interaction), Volume 4, ASME, New York, NY, 2019, p. 93984

[4] K. Singh; S. Michelin; E. De Langre Energy harvesting from axial fluid-elastic instabilities of a cylinder, J. Fluids Struct., Volume 30 (2012), pp. 159-172 | DOI

[5] S. Michelin; O. Doare Energy harvesting efficiency of piezoelectric flags in axial flows, J. Fluid Mech., Volume 714 (2013), pp. 489-504 | DOI | MR | Zbl

[6] E. Virot; X. Amandolese; P. Hemon Coupling between a flag and a spring-mass oscillator, J. Fluids Struct., Volume 65 (2016), pp. 447-454 | DOI

[7] C. Eloy; R. Lagrange; C. Souilliez; L. Schouveiler Aeroelastic instability of cantilevered flexible plates in uniform flow, J. Fluid Mech., Volume 611 (2008), pp. 97-106 | DOI | MR | Zbl

[8] G. G. Stokes On the effect of the internal friction of fluids on pendulums, Trans. Camb. Phil. Soc., Volume 9 (1851), pp. 8-106

[9] G. H. Keulegan; L. H. Carpenter Forces on cylinders and plates in an oscillating fluid, J. Res. Natl. Bur. Stand., Volume 60 (1958), 2857

[10] C. J. Garrison; R. B. Berklitc Hydrodynamic loads induced by earthquakes, Offshore Technology Conference, Volume 1, OnePetro, Richardson, TX, 1972, pp. 429-442

[11] T. Sarpkaya Separated flow about lifting bodies and impulsive flow about cylinders, Am. Inst. Aeronaut. Astronaut. J., Volume 4 (1966), pp. 414-420 | DOI

[12] A. R. Chandrasekaran; S. S. Saini Vibration of submerged structures, Water Energy Int., Volume 28 (1971), pp. 263-268

[13] R. A. Skop; S. E. Ramberg; K. M. Ferer Added Mass and Damping Forces on Circular Cylinders, Dept. of Defense, Dept. of the Navy, Office of Naval Research, Naval Research Laboratory; Springfield, Washington, 1976

[14] T. Sarpkaya Forces on cylinders and spheres in a sinusoidally oscillating fluid, J. Appl. Mech., Volume 42 (1975), pp. 32-37 | DOI

[15] L. H. Carpenter On the motion of two cylinders in an ideal fluid, J. Res. Natl. Bur. Stand., Volume 61 (1958), pp. 83-87 | DOI | MR | Zbl

[16] L. Landweber; A. Shahshahan Added masses and forces on two bodies approaching central impact in an inviscid fluid (1991) no. 346 (Technical report)

[17] W. M. Hicks On the motion of two cylinders in a fluid, Q. J. Pure Appl. Math., Volume 16 (1879), pp. 113-140 (193–219) | Zbl

[18] A. G. Greenhill Functional images in cartesians, Q. J. Pure Appl. Math., Volume 18 (1882) no. 182, pp. 356-362 | Zbl

[19] G. Birkhoff Hydrodynamics, Princeton University Press, Princeton, New Jersey, 1960

[20] R. J. Gibert; M. Sagner Vibration of structures in a static fluid medium, La Houille Blanche, Volume 1/2 (1980), pp. 204-262

[21] D. A. Burton; J. Gratus; R. W. Tucker Hydrodynamic forces on two moving discs, Theor. Appl. Mech., Volume 31 (2004), pp. 153-188 | DOI | MR | Zbl

[22] A. A. Tchieu; D. Crowdy; A. Leonard Fluid–structure interaction of two bodies in an inviscid fluid, Phys. Fluids, Volume 22 (2010), 107101 | DOI

[23] Y. M. Scolan; S. Etienne On the use of conformal mapping for the computation of hydrodynamic forces acting on bodies of arbitrary shape in viscous flow. Part 2: multi-body configuration, J. Eng. Math., Volume 61 (2008), pp. 17-34 | DOI | Zbl

[24] D. G. Crowdy Analytical solutions for uniform potential flow past multiple cylinders, Eur. J. Mech. (B/Fluids), Volume 25 (2006), pp. 459-470 | DOI | MR | Zbl

[25] D. G. Crowdy A new calculus for two-dimensional vortex dynamics, Theor. Comput. Fluid Dyn., Volume 24 (2010), pp. 9-24 | DOI

[26] R. Lagrange; X. Delaune; P. Piteau; L. Borsoi; J. Antunes A new analytical approach for modeling the added mass and hydrodynamic interaction of two cylinders subjected to large motions in a potential stagnant fluid, J. Fluids Struct., Volume 77 (2018), pp. 102-114 | DOI

[27] R. Lagrange; Y. Fraigneau New estimations of the added mass and damping of two cylinders vibrating in a viscous fluid, from theoretical and numerical approaches, J. Fluids Struct., Volume 92 (2020), 102818 | DOI

[28] R. Lagrange; M. A. Puscas Hydrodynamic interaction between two flexible finite length coaxial cylinders: New theoretical formulation and numerical validation, J. Appl. Mech., Volume 89 (2022) no. 8, 081006 | DOI

[29] A. Gronski; G. Artana A simple and efficient direct forcing immersed boundary method combined with a high order compact scheme for simulating flows with moving rigid boundaries, Comput. Fluids, Volume 124 (2016), pp. 86-104 | DOI | MR

[30] Y. Cheny; O. Botella Ls-stag method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties, J. Comput. Phys., Volume 229 (2010), pp. 1043-1076 | DOI | MR | Zbl

[31] R. Mittal; G. Iaccarino Immersed boundary methods, Annu. Rev. Fluid Mech., Volume 37 (2005), pp. 239-261 | DOI | MR | Zbl

[32] B. Kadoch; D. Kolomenskiy; P. Angot; K. Schneider A volume penalization method for incompressible flows and scalar advection diffusion with moving obstacles, J. Comput. Phys., Volume 231 (2012), pp. 4365-4383 | DOI | MR | Zbl

[33] K. Schneider Immersed boundary methods for numerical simulation of confined fluid and plasma turbulence in complex geometries: a review, J. Plasma Phys., Volume 81 (2015), 435810601 | DOI

[34] M. Minguez; R. Pasquetti; E. Serre High-order large-eddy simulation of flow over the Ahmed body car model, Phys. Fluids, Volume 20 (2008), 095101 | DOI | Zbl

[35] C. Nore; D. Castanon Quiroz; L. Cappanera; J. L. Guermond Numerical simulation of the von Karman sodium dynamo experiment, J. Fluid Mech., Volume 854 (2018), pp. 164-195 | DOI | Zbl

[36] J. Donea; A. Huerta; J. P. Ponthot; A. Rodríguez-Ferran Arbitrary Lagrangian–Eulerian Methods, American Cancer Society, Atlanta, GA, 2004

[37] G. Fourestey; S. Piperno A second-order time-accurate ALE Lagrange–Galerkin method applied to wind engineering and control of bridge profiles, Comput. Meth. Appl. Mech. Eng., Volume 193 (2004), pp. 4117-4137 | DOI | Zbl

[38] B. Koobus; C. Farhat; H. Tran Computation of unsteady viscous flows around moving bodies using the kε turbulence model on unstructured dynamic grids, Comput. Meth. Appl. Mech. Eng., Volume 190 (2000), pp. 1441-1466 | DOI | Zbl

[39] P. E. Angeli; U. Bieder; G. Fauchet Overview of the TrioCFD code: Main features, V&V procedures and typical applications to nuclear engineering, Proceedings of 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, USA, American Nuclear Society, La Grange Park, IL, 2015, p. 252

[40] P. E. Angeli; M. A. Puscas; G. Fauchet; A. Cartalade FVCA8 benchmark for the Stokes and Navier–Stokes equations with the TrioCFD code—benchmark session, Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Springer, Cham, 2017, pp. 181-202 | Zbl

[41] C. Fiorini; B. Després; M. A. Puscas Sensitivity equation method for the Navier–Stokes equations applied to uncertainty propagation, Int. J. Numer. Meth. Fluids, Volume 93 (2020) no. 1, pp. 71-92 | DOI | MR

[42] M. A. Puscas; L. Monasse A three-dimensional conservative coupling method between an inviscid compressible flow and a moving rigid solid, SIAM J. Sci. Comput., Volume 37 (2015), p. B884-B909 | DOI | MR | Zbl

[43] M. A. Puscas; L. Monasse; A. Ern; C. Tenaud; C. Mariotti; V. Daru A time semi-implicit scheme for the energy-balanced coupling of a shocked fluid flow with a deformable structure, J. Comput. Phys., Volume 296 (2015), pp. 241-262 | DOI | MR | Zbl

[44] M. A. Puscas; L. Monasse; A. Ern; C. Tenaud; C. Mariotti A conservative embedded boundary method for an inviscid compressible flow coupled with a fragmenting structure, Int. J. Numer. Meth. Eng., Volume 103 (2015), pp. 970-995 | DOI | MR | Zbl

[45] F. Duarte; R. Gormaz; S. Natesan Arbitrary Lagrangian–Eulerian method for Navier–Stokes equations with moving boundaries, Comput. Meth. Appl. Mech. Eng., Volume 193 (2004), pp. 4819-4836 | DOI | MR | Zbl

[46] A. J. Chorin Numerical solution of the Navier–Stokes equations, Math. Comput., Volume 22 (1968), pp. 745-762 | DOI | MR

[47] R. Temam Une méthode d’approximation de la solution des équations de Navier–Stokes, Bull. Soc. Math. Fr., Volume 96 (1968), pp. 115-152 | DOI | Zbl

[48] Y. Saad; M. H. Schultz GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., Volume 7 (1986) no. 3, pp. 856-869 | DOI | MR | Zbl

[49] S. S. Chen; M. W. Wambsganss; J. A. Jendrzejczyk Added mass and damping of a vibrating rod in confined viscous fluids, J. Appl. Mech., Volume 43 (1976), pp. 325-329 | DOI

[50] T. T. Yeh; S. S. Chen The effect of fluid viscosity on coupled tube/fluid vibrations, J. Sound Vib., Volume 59 (1978) no. 3, pp. 453-467 | DOI

[51] C. Geuzaine; J.-F. Remacle Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Meth. Eng., Volume 79 (2009), pp. 1309-1331 | DOI | Zbl

[52] R. Lagrange Hydrodynamic interaction of two coaxial cylinders https://www.youtube.com/watch?v=7FxlJeH11jQ&feature=emb_logo&ab_channel=RomainLagrange

[53] M. J. Pettigrew; C. E. Taylor; N. Subash Flow-induced vibration specifications for steam generators and liquid heat exchangers (1995) (Technical report)

[54] S. Caillaud; E. de Langre; P. Piteau The measurement of fluidelastic effects at low reduced velocities using piezoelectric actuators, ASME J. Press. Vessel Technol., Volume 121 (1999), pp. 232-238 | DOI

[55] S. Caillaud; E. de Langre; F. Baj Active vibration control for the measurement of fluidelastic effects, ASME J. Press. Vessel Technol., Volume 125 (2003) no. 2, pp. 165-170 | DOI

[56] P. Piteau; X. Delaune; J. Antunes; L. Borsoi Experiments and computations of a loosely supported tube in a rigid bundle subjected to single-phase flow, J. Fluids Struct., Volume 28 (2012), pp. 56-71 | DOI

[57] H. Tanaka; S. Takahara Fluidelastic vibration of tube arrays in cross-flow, J. Sound Vib., Volume 77 (1981), pp. 19-37 | DOI

[58] A. Ribes; C. Caremoli Salomé platform component model for numerical simulation, 31st Annual International Computer Software and Applications Conference (COMPSAC 2007), Volume 2, IEEE, Piscataway, NJ, 2007, pp. 553-564 | DOI

Cited by Sources:

Comments - Policy