We consider a system of nonlinear partial differential equations modelling steady flow of an incompressible chemically reacting non-Newtonian fluid, whose viscosity depends on both the shear-rate and the concentration; in particular, the viscosity is of power-law type, with a power-law index that depends on the concentration. We prove that the weak solution, whose existence was already established in the literature, is unique, given some strengthened assumptions on the diffusive flux and the stress tensor, for small enough data. We then show that the uniqueness result can be applied to a model describing the synovial fluid. Furthermore, in the latter context, we prove the convergence of a nonlinear iteration scheme; the proposed scheme is remarkably simple and it amounts to solving a linear Stokes–Laplace system at each step. Numerical experiments are performed, which confirm the theoretical findings.
Accepted:
Online First:
Published online:
Pablo Alexei Gazca-Orozco 1; Pascal Heid 2; Endre Süli 2

@article{CRMECA_2023__351_S1_431_0, author = {Pablo Alexei Gazca-Orozco and Pascal Heid and Endre S\"uli}, title = {Nonlinear iterative approximation of steady incompressible chemically reacting flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {431--455}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.127}, language = {en}, }
TY - JOUR AU - Pablo Alexei Gazca-Orozco AU - Pascal Heid AU - Endre Süli TI - Nonlinear iterative approximation of steady incompressible chemically reacting flows JO - Comptes Rendus. Mécanique PY - 2023 SP - 431 EP - 455 VL - 351 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.127 LA - en ID - CRMECA_2023__351_S1_431_0 ER -
%0 Journal Article %A Pablo Alexei Gazca-Orozco %A Pascal Heid %A Endre Süli %T Nonlinear iterative approximation of steady incompressible chemically reacting flows %J Comptes Rendus. Mécanique %D 2023 %P 431-455 %V 351 %N S1 %I Académie des sciences, Paris %R 10.5802/crmeca.127 %G en %F CRMECA_2023__351_S1_431_0
Pablo Alexei Gazca-Orozco; Pascal Heid; Endre Süli. Nonlinear iterative approximation of steady incompressible chemically reacting flows. Comptes Rendus. Mécanique, The scientific legacy of Roland Glowinski, Volume 351 (2023) no. S1, pp. 431-455. doi : 10.5802/crmeca.127. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.127/
[1] Méthodes numériques pour l’écoulement laminaire d’un fluide rigide viscoplastique incompressible, Int. J. Comput. Math., Volume 3 (1972), pp. 225-255 | DOI | Zbl
[2] Écoulement d’un fluide rigide viscoplastique incompressible, C. R. Acad. Sci. Paris Sér. A-B, Volume 270 (1970), p. A58-A61 | Zbl
[3] Sur l’approximation, par éléments finis d’ordre 1, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, C. R. Acad. Sci. Paris Sér. A, Volume 278 (1974), pp. 1649-1652 | Zbl
[4] Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, Rev. Fr. Autom. Inform. Rech. Opér. Sér. Rouge Anal. Numér., Volume 9 (1975) no. R-2, pp. 41-76 | Zbl
[5] Sur l’écoulement d’un fluide de Bingham dans une conduite cylindrique, J. Méc., Volume 13 (1974), pp. 601-621 | Zbl
[6] Sur l’approximation d’une inéquation variationnelle elliptique de type Bingham, Rev. Fr. Autom. Inform. Rech. Opér. Sér., Volume 10 (1976) no. R-3, pp. 13-30
[7] Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution, Numerical Linear Algebra Methods for Computational Fluid Flow Problems, Volume 7, Wiley Online Library, Hoboken, NJ, 2000, pp. 381-428 | DOI | MR | Zbl
[8] Operator-splitting methods for the simulation of Bingham visco-plastic flow, Chinese Ann. Math., Volume 23 (2002), pp. 187-204 (Dedicated to the memory of Jacques-Louis Lions) | DOI | MR | Zbl
[9] A fictitious domain method for the numerical simulation of particulate flow for Bingham visco-plastic fluids, Numerical Methods for Scientific Computing. Variational Problems and Applications, International Centre for Numerical Methods in Engineering (CIMNE), Barcelona, 2003, pp. 11-19
[10] Operator-splitting methods for the simulation of Bingham visco-plastic flow [MR1924135], Frontiers in Mathematical Analysis and Numerical Methods, World Scientific Publishing, River Edge, NJ, 2004, pp. 105-130
[11] Qualitative properties and approximation of solutions of Bingham flows: on the stabilization for large time and the geometry of the support, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, Volume 104 (2010) no. 1, pp. 153-196 | DOI | MR
[12] When Bingham meets Bratu: mathematical and computational investigations, ESAIM Control Optim. Calc. Var., Volume 27 (2021), 27 | DOI | MR | Zbl
[13] Hyaluronic acid (HA) viscosupplementation on synovial fluid inflammation in knee osteoarthritis: a pilot study, Open Orthop J., Volume 7 (2013), pp. 378-384 | DOI
[14] Hyaluronan and synovial joint: function, distribution and healing, Interdiscip. Toxicol., Volume 6 (2013) no. 3, pp. 111-125 | DOI
[15] Chapter 31—Structural biomarkers, Biochemistry of Collagens, Laminins and Elastin, Elsevier, Amsterdam, 2016, pp. 203-233 https://www.sciencedirect.com/science/article/pii/B9780128098479000313 | DOI
[16] Chapter 2—Structure and function, Textbook of Pediatric Rheumatology, W. B. Saunders, Philadelphia, 2005, pp. 9-18 https://www.sciencedirect.com/science/article/pii/B9781416002468500085 | DOI
[17] Structure of hyaluronic acid in synovial fluid and its influence on the movement of solutes, Semin. Arthritis Rheum., Volume 7 (1977) no. 2, pp. 141-152 | DOI
[18] Rheological equations for synovial fluids, J. Biomech. Eng., Volume 100 (1978) no. 4, pp. 169-186 | DOI
[19] Generalized dispersion in a synovial fluid of human joints, Biorheology, Volume 28 (1991) no. 3–4, pp. 207-219 | DOI
[20] Characterization of the effect of high molecular weight hyaluronan on trans-synovial flow in rabbit knees, J. Physiol., Volume 514 (1999) no. 1, pp. 265-282 | DOI
[21] Conformation and dynamic interactions in hyaluronate solutions, J. Mol. Biol., Volume 138 (1980) no. 2, pp. 383-400 https://www.sciencedirect.com/science/article/pii/0022283680902946 | DOI
[22] On the modeling of the synovial fluid, Adv. Tribol., Volume 2010 (2010), 104957
[23] Biochemical and mechanical processes in synovial fluid—modeling, analysis and computational simulations, Ph. D. Thesis, Charles University in Prague and Heidelberg University (2012) (available at: https://www-m2.ma.tum.de/foswiki/pub/M2/Allgemeines/PetraPustejovska/PhD_pustejovska.pdf)
[24] Mathematical results concerning unsteady flows of chemically reacting incompressible fluids, Partial Differential Equations and Fluid Mechanics (London Mathematical Society Lecture Note Series), Volume 364, Cambridge University Press, Cambridge, 2009, pp. 26-53 | MR | Zbl
[25] On existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index, J. Math. Anal. Appl., Volume 402 (2013) no. 1, pp. 157-166 https://ezproxy-prd.bodleian.ox.ac.uk:2102/10.1016/j.jmaa.2012.12.066 | DOI | MR | Zbl
[26] Existence analysis for a model describing flow of an incompressible chemically reacting non-Newtonian fluid, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3223-3240 https://ezproxy-prd.bodleian.ox.ac.uk:2102/10.1137/130927589 | DOI | MR | Zbl
[27] Finite element approximation of an incompressible chemically reacting non-Newtonian fluid (2017) no. 1703.04766 (Technical report)
[28] Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index, Math. Comput., Volume 88 (2019) no. 317, pp. 1061-1090 https://ezproxy-prd.bodleian.ox.ac.uk:2102/10.1090/mcom/3379 | DOI | MR | Zbl
[29] Uniform Hölder-norm bounds for finite element approximations of second-order elliptic equations, IMA J. Numer. Anal., Volume 41 (2021) no. 3, pp. 1846-1898 https://ezproxy-prd.bodleian.ox.ac.uk:2102/10.1093/imanum/drab029 | DOI | Zbl
[30] A priori regularity results for discrete solutions to elliptic problems, Ph. D. Thesis, University of Oxford (2020) (available at: https://ora.ox.ac.uk/objects/uuid:d5e84b98-653a-4690-b6de-8d32b2786f43)
[31] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011, xiv + 599 pages | DOI
[32] Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, 51, Springer, Cham, 2016, xiii + 812 pages | DOI
[33] Finite Elements I—Approximation and Interpolation, Texts in Applied Mathematics, 72, Springer, Cham, 2021, xii + 325 pages (©2021, https://ezproxy-prd.bodleian.ox.ac.uk:2102/10.1007/978-3-030-56341-7) | DOI
[34] Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986, x + 374 pages | DOI
[35] On the existence of classical solution to the steady flows of generalized Newtonian fluid with concentration dependent power-law index, J. Math. Fluid Mech., Volume 21 (2019) no. 1, 15 https://ezproxy-prd.bodleian.ox.ac.uk:2102/10.1007/s00021-019-0415-8 | MR | Zbl
[36] Finite element approximation of an incompressible chemically reacting non-Newtonian fluid, ESAIM Math. Model. Numer. Anal., Volume 52 (2018) no. 2, pp. 509-541 | DOI | MR | Zbl
[37] Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities, RAIRO Modél. Math. Anal. Numér., Volume 28 (1994) no. 6, pp. 725-744 | DOI | Numdam | MR | Zbl
[38] On the convergence rate of the Kačanov scheme for shear-thinning fluids, Calcolo, Volume 59 (2022) no. 1, 4 | DOI | Zbl
[39] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, xiv + 517 pages (Reprint of the 1998 edition) | DOI
[40] Solving functional equations by contractive averaging (1960) no. 160 (Technical report)
[41] Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley and Sons, Hoboken, NJ, 1986
[42] Nonlinear Functional Analysis and its Applications. II/B, Springer-Verlag, New York, 1990
[43] Theory, fast solvers, and applications in elasticity theory, Finite Elements, Cambridge University Press, Cambridge, 2007, p. xviii + 365 (https://ezproxy-prd.bodleian.ox.ac.uk:2102/10.1017/CBO9780511618635, Translated from the German by Larry L. Schumaker) | DOI | Zbl
[44] An adaptive iterative linearised finite element method for implicitly constituted incompressible fluid flow problems and its application to Bingham fluids, Appl. Numer. Math., Volume 181 (2022), pp. 364-387 | DOI | MR | Zbl
[45] The FEniCS project version 1.5, Arch. Numer. Softw., Volume 3 (2015) no. 100, pp. 9-23
[46] et al. Automated Solution of Differential Equations by the Finite Element Method, Springer, Cham, 2012 | DOI
[47] Mesh Dependence in PDE-Constrained Optimisation, Springer, Cham, 2017 | DOI
[48] Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Oxford University Press, USA, 2014 | DOI
Cited by Sources:
Comments - Policy