A semi-analytical finite element method algorithm was established to plot the dispersion curves of isotropic aluminum and orthotropic plates. The curves obtained are compared with those plotted by the DISPERSE software and with previous experimental work. The results showed that the accuracy of the method depends on the number of elements for meshing. To ensure good precision and speed of the method, the number of elements per plate thickness must be optimized.
Révisé le :
Accepté le :
Publié le :
Salah Nissabouri 1 ; Mhammed El Allami 2, 3 ; El Hassan Boutyour 4
@article{CRMECA_2020__348_5_335_0, author = {Salah Nissabouri and Mhammed El Allami and El Hassan Boutyour}, title = {Quantitative evaluation of semi-analytical finite element method for modeling {Lamb} waves in orthotropic plates}, journal = {Comptes Rendus. M\'ecanique}, pages = {335--350}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {5}, year = {2020}, doi = {10.5802/crmeca.13}, language = {en}, }
TY - JOUR AU - Salah Nissabouri AU - Mhammed El Allami AU - El Hassan Boutyour TI - Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates JO - Comptes Rendus. Mécanique PY - 2020 SP - 335 EP - 350 VL - 348 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmeca.13 LA - en ID - CRMECA_2020__348_5_335_0 ER -
%0 Journal Article %A Salah Nissabouri %A Mhammed El Allami %A El Hassan Boutyour %T Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates %J Comptes Rendus. Mécanique %D 2020 %P 335-350 %V 348 %N 5 %I Académie des sciences, Paris %R 10.5802/crmeca.13 %G en %F CRMECA_2020__348_5_335_0
Salah Nissabouri; Mhammed El Allami; El Hassan Boutyour. Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates. Comptes Rendus. Mécanique, Volume 348 (2020) no. 5, pp. 335-350. doi : 10.5802/crmeca.13. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.13/
[1] Lamb waves propagation plotting the dispersion curves, Conference: ICCWCS16Volume: PROCEEDINGSISSN, Morocco (2016), pp. 153-156
[2] Non destructive testing of sandwich composites: adhesion defects evaluation; experimental and finite element method simulation comparison, Acoustics 2012 Nantes, Nantes, France (2012), pp. 2659-2664
[3] The general problem of elastic wave propagation in multilayered anisotropic media, J. Acoust. Soc. Am. (1991), pp. 1521-1531 | DOI
[4] Spectral-method algorithm for modeling dispersion of acoustic modes in elastic cylindrical structures, Geophysics, Volume 75 (2010), p. H19-H27
[5]
(“Analysis report for footing vibrations through layered media”, PhD Thesis, University of California, 1972)[6] Semi-analytical finite element method for modeling of lamb wave propagation, CEAS Aeronaut. J., Volume 4 (2013), pp. 21-33 | DOI
[7] Modeling wave propagation in damped waveguides of arbitrary cross-section, J. Sound Vibrat., Volume 295 (2006), pp. 685-707 | DOI
[8] Analysis of flexural mode focusing by a semi analytical finite element method, J. Acoust. Soc. Am., Volume 113 (2003), pp. 1241-1248
[9] Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example, Ultrasonics, Volume 41 (2003), pp. 175-183
[10] Transient ultrasonic guided waves in layered plates with rectangular cross section, J. Appl. Phys., Volume 93 (2003), pp. 9360-9363
[11] Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code, Ultrasonics, Volume 54 (2014), pp. 1825-1831
[12] Guided wave propagation in buried and immersed fluid-filled pipes: Application of the semi analytic finite element method, Comput. Struct., Volume 212 (2019), pp. 236-247
[13] Research on a rail defect location method based on a single mode extraction algorithm, Appl. Sci., Volume 9 (2019), pp. 1-16 | DOI
[14] Disperse: A general purpose program for creating dispersion curves, Review of Progress in Quantitative NDE, Springer, Boston, MA, 2013, pp. 185-192
[15] A closed form solution method for rapid calculation of guided wave dispersion curves for pipes, Wave Motion, Volume 53 (2015), pp. 40-50 | DOI | Zbl
[16] Validation of dispersion curve reconstruction techniques for the A0 and S0 modes of lamb waves, Inti J. Struct. Stability Dyn., Volume 14 (2014), pp. 1-11
[17] Calculation of guided wave dispersion characteristics using a three-transducer measurement system, Appl. Sci., Volume 8 (2018), p. 1253 | DOI
[18] Empirical technique for dispersion curve creation for guided wave applications, Conference: 8th European Workshop on Structural Health Monitoring, EWSHM, Spain (2016)
[19] Modelling of long range ultrasonic waves in complex structures, BINDT Annual Conference, UK (2008)
[20] Numerical simulation of Lamb wave scattering in semi-infinite plates, Int. J. Numer. Meth. Engng, Volume 53 (2002), pp. 1145-1173
[21] Accurate characterization of 3D dispersion curves and mode shapes of waves propagating in generally anisotropic viscoelastic/elastic plates, Intl J. Solids Struct., Volume 150 (2018), pp. 52-65
[22] Yuan, Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments, Composit. Sci. Technol., Volume 67 (2007), pp. 1370-1384
[23] Mechanics of Composite Materials, CRC Press, 2006
Cité par Sources :
Commentaires - Politique