Comptes Rendus
In situ experiments in microgravity and phase-field simulations of the lamellar-to-rod transition during eutectic growth
Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 219-231.

In recent experiments on the solidification of the binary eutectic alloy succinonitrile-(D)camphor carried out on board of the International Space Station (ISS), a transition from rod to lamellar patterns was observed for low growth velocities. The transition was interpreted in terms of a competition between a propagative instability of lamellae and a drift induced by a transverse temperature gradient. Phase-field simulations of a symmetric model alloy support this scenario: for a fixed transverse temperature gradient, the transition from rods to lamellae occurs for a critical composition at fixed velocity, and for a critical velocity at fixed composition. Since the alloy and control parameters used in experiments and simulations are different, our results strongly suggest that this morphological transition is generic for eutectic alloys.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.142
Mots clés : Solidification, Eutectic alloys, In situ experiments, Modeling, Microgravity, Pattern formation
Silvère Akamatsu 1 ; Sabine Bottin-Rousseau 1 ; Melis Şerefoğlu 2 ; Victor T. Witusiewicz 3 ; Ulrike Hecht 2 ; Mathis Plapp 4

1 Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, case courrier 840, 4 place Jussieu, 75252 Paris Cedex 05, France
2 Department of Metallurgical and Materials Engineering, Marmara University, Maltepe, İstanbul, Turkey
3 Access e.V., Intzestr. 5, 52072 Aachen, Germany
4 Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S2_219_0,
     author = {Silv\`ere Akamatsu and Sabine Bottin-Rousseau and Melis \c{S}erefo\u{g}lu and Victor T. Witusiewicz and Ulrike Hecht and Mathis Plapp},
     title = {In situ experiments in microgravity and phase-field simulations of the lamellar-to-rod transition during eutectic growth},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {219--231},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.142},
     language = {en},
}
TY  - JOUR
AU  - Silvère Akamatsu
AU  - Sabine Bottin-Rousseau
AU  - Melis Şerefoğlu
AU  - Victor T. Witusiewicz
AU  - Ulrike Hecht
AU  - Mathis Plapp
TI  - In situ experiments in microgravity and phase-field simulations of the lamellar-to-rod transition during eutectic growth
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 219
EP  - 231
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.142
LA  - en
ID  - CRMECA_2023__351_S2_219_0
ER  - 
%0 Journal Article
%A Silvère Akamatsu
%A Sabine Bottin-Rousseau
%A Melis Şerefoğlu
%A Victor T. Witusiewicz
%A Ulrike Hecht
%A Mathis Plapp
%T In situ experiments in microgravity and phase-field simulations of the lamellar-to-rod transition during eutectic growth
%J Comptes Rendus. Mécanique
%D 2023
%P 219-231
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.142
%G en
%F CRMECA_2023__351_S2_219_0
Silvère Akamatsu; Sabine Bottin-Rousseau; Melis Şerefoğlu; Victor T. Witusiewicz; Ulrike Hecht; Mathis Plapp. In situ experiments in microgravity and phase-field simulations of the lamellar-to-rod transition during eutectic growth. Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 219-231. doi : 10.5802/crmeca.142. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.142/

[1] M. E. Glicksman; M. B. Koss; E. A. Winsa Dendritic Growth Velocities in Microgravity, Phys. Rev. Lett., Volume 73 (1994) no. 4, pp. 573-576 | DOI

[2] L. A. Tennenhouse; M. B. Koss; J. C. LaCombe; M. E. Glicksman Use of microgravity to interpret dendritic growth kinetics at small supercoolings, J. Cryst. Growth, Volume 174 (1997), pp. 82-89 (10 th American Conference on Crystal Growth/9 th International Conference on Vapor Growth and Epitaxy, VAIL, CO, AUG 04-09, 1996) | DOI

[3] J. C. LaCombe; M. B. Koss; V. E. Fradkov; M. E. Glicksman Three-dimensional dendrite-tip morphology, Phys. Rev. E, Volume 52 (1995) no. 3, pp. 2778-2786 | DOI

[4] M. B. Koss; J. C. LaCombe; L. A. Tennenhouse; M. E. Glicksman; E. A. Winsa Dendritic growth tip velocities and radii of curvature in microgravity, Metall. Mater. Trans. A, Volume 30 (1999), pp. 3177-3190 | DOI

[5] J. J. Favier; J. P. Garandet; A. Rouzaud; D. Camel Mass-transport phenomena during solidification in microgravity – Preliminary results of the 1st MEPHISTO flight experiment, J. Cryst. Growth, Volume 140 (1994), pp. 237-243 | DOI

[6] B. Drevet; Henri Nguyen-Thi; D. Camel; B. Billia; M. D. Dupouy Solidification of aluminium-lithium alloys near the cell/dendrite transition-influence of solutal convection, J. Cryst. Growth, Volume 218 (2000) no. 4-5, pp. 419-433 | DOI

[7] D. J. Jarvis; O. Minster Metallurgy in space, Solidification and Gravity IV (R. Roósz; M. Rettenmayr; Z. G‘ácsi, eds.) (Materials Science Forum), Volume 508, Trans Tech Publications, Univ Miskolc, Mat & Met Engn Fac, Phys Met & Metalforming Dept; Hungarian Acad Sci, Res Grp Mat Sci; NASA MSFC; HAS, Mickolc Comm; Hungarian Space Off; Assoc Hungarian Foundries (2006), pp. 1-18 (4 th International Conference on Solidification and Gravity, Miskolc Lillafured, HUNGARY, SEP 06-09, 2004) | DOI

[8] J. P. Garandet; G. Boutet; P. Lehmann; B. Drevet; D. Camel; A. Rouzaud; J. J. Favier; Gabriel Faivre; S. Coriell; J. I. D. Alexander; B. Billia Morphological stability of a solid-liquid interface and cellular growth: Insights from thermoelectric measurements in microgravity experiments, J. Cryst. Growth, Volume 279 (2005) no. 1-2, pp. 195-205 | DOI

[9] N. Bergeon; D. Tourret; L. Chen; J.-M. Debierre; R. Guérin; A. Ramirez; B. Billia; A. Karma; R. Trivedi Spatiotemporal Dynamics of Oscillatory Cellular Patterns in Three-Dimensional Directional Solidification, Phys. Rev. Lett., Volume 110 (2013), 226102 | DOI

[10] D. Tourret; J.-M. Debierre; Y. Song; F. L. Mota; N. Bergeon; R. Guérin; R. Trivedi; B. Billia; A. Karma Oscillatory cellular patterns in three-dimensional directional solidification, Phys. Rev. E, Volume 92 (2015) no. 4, 042401 | DOI

[11] Georges Salloum-Abou-Jaoude; Henri Nguyen-Thi; Guillaume Reinhart; Ragnvald H. Mathiesen; Gerhard Zimmermann; Daniela Voss Characterization of Motion of Dendrite Fragment by X-Ray Radiography on Earth and under Microgravity Environment, Materials Science Forum, Volume 790-791 (2014), pp. 311-316 | DOI

[12] Mathis Plapp; Sabine Bottin-Rousseau; Gabriel Faivre; Silvère Akamatsu Eutectic solidification patterns: Interest of microgravity environment, Comptes Rendus Mécanique, Volume 345 (2017) no. 1, pp. 56-65 (Basic and applied researches in microgravity – A tribute to Bernard Zappoli’s contribution) | DOI

[13] Mathis Plapp; M. Dejmek Stability of hexagonal solidification patterns, Eur. Phys. Lett., Volume 65 (2004) no. 2, pp. 276-282 | DOI

[14] Kenneth A. Jackson; J. D. Hunt Lamellar and Rod Eutectic Growth, Transactions of the Metallurgical Society of AIME, Volume 236 (1966), pp. 1129-1142 | DOI

[15] K. Kassner; C. Misbah Similarity laws in eutectic growth, Phys. Rev. Lett., Volume 66 (1991) no. 4, pp. 445-448 | DOI

[16] K. Kassner; C. Misbah Spontaneous parity-breaking transition in directional growth of lamellar eutectic structures, Phys. Rev. A, Volume 44 (1991) no. 10, pp. 6533-6543 | DOI

[17] A. Karma; A. Sarkissian Morphological instabilities of lamellar eutectics, Metall. Mater. Trans. A, Volume 27 (1996), pp. 635-656 | DOI

[18] Marie Ginibre; Silvère Akamatsu; Gabriel Faivre Experimental determination of the stability diagram of a lamellar eutectic growth front, Phys. Rev. E, Volume 56 (1997), pp. 780-796 | DOI

[19] Andrea Parisi; Mathis Plapp Stability of lamellar eutectic growth, Acta Mater., Volume 56 (2008) no. 6, pp. 1348-1357 | DOI

[20] Andrea Parisi; Mathis Plapp Defects and multistability in eutectic solidification patterns, Europhysics Letters, Volume 90 (2010), 26010 | DOI

[21] S. Liu; J. H. Lee; R. Trivedi Dynamic effects in the lamellar-rod eutectic transition, Acta Mater., Volume 59 (2011) no. 8, pp. 3102-3115 | DOI

[22] Sabine Bottin-Rousseau; Victor T. Witusiewicz; Ulrike Hecht; Jose Fernandez; Ana Laveron-Simavilla; Silvère Akamatsu Coexistence of rod-like and lamellar eutectic growth patterns, Scr. Mater., Volume 207 (2022), 114314 | DOI

[23] M. Şerefoğlu; Sabine Bottin-Rousseau; Silvère Akamatsu Lamella-rod pattern transition and confinement effects during eutectic growth, Acta Mater., Volume 242 (2023), 118425 | DOI

[24] Mikaël Perrut; Andrea Parisi; Silvère Akamatsu; Sabine Bottin-Rousseau; Gabriel Faivre; Mathis Plapp Role of transverse temperature gradients in the generation of lamellar eutectic solidification patterns, Acta Mater., Volume 58 (2010) no. 5, pp. 1761-1769 | DOI

[25] Victor T. Witusiewicz; L. Sturz; Ulrike Hecht; S. Rex Thermodynamic description and unidirectional solidification of eutectic organic alloys: I. Succinonitrile-(D)camphor system, Acta Mater., Volume 52 (2004), pp. 4561-4571 | DOI

[26] M. Şerefoğlu; R. E. Napolitano On the selection of rod-type eutectic morphologies: Geometrical constraint and array orientation, Acta Mater., Volume 56 (2008) no. 15, pp. 3862-3873 | DOI

[27] Silvère Akamatsu; Sabine Bottin-Rousseau; Mikaël Perrut; Gabriel Faivre; Victor T. Witusiewicz; L. Sturz Real-time study of thin and bulk eutectic growth in succinonitrile-(D)camphor alloys, J. Cryst. Growth, Volume 299 (2007) no. 2, pp. 418-428 | DOI

[28] Mikaël Perrut; Silvère Akamatsu; Sabine Bottin-Rousseau; Gabriel Faivre Long-time dynamics of the directional solidification of rodlike eutectics, Phys. Rev. E, Volume 79 (2009) no. 3, 032602 | DOI

[29] Mikaël Perrut; Sabine Bottin-Rousseau; Gabriel Faivre; Silvère Akamatsu Dynamic instabilities of rod-like eutectic growth patterns: A real-time study, Acta Mater., Volume 61 (2013), pp. 6802-6808 | DOI

[30] Sabine Bottin-Rousseau; Mikaël Perrut; Christian Picard; Silvère Akamatsu; Gabriel Faivre An experimental method for the in situ observation of eutectic growth patterns in bulk samples of transparent alloys, J. Cryst. Growth, Volume 306 (2007), pp. 465-472 | DOI

[31] V. Trnovcová; P. P. Fedorov; C. Bàrta; V. Labas; V. A. Meleshina; B. P. Sobolev Microstructure and physical properties of superionic eutectic composites of the LiFRF 3 (R 5 rare earth element) system, Solid State Ionics, Volume 119 (1999) no. 1-4, pp. 173-180 | DOI

[32] M. Neuroth; K. Recker; F. Wallrafen Investigations on the directional solidification of the eutectic LiF–LiBaF 3 , Zeitschrift für Kristallographie - Crystalline Materials, Volume 209 (1994) no. 4, pp. 295-302 | DOI

[33] Melis Şerefloğlu; Sabine Bottin-Rousseau; Silvère Akamatsu; Gabriel Faivre Dynamics of rod eutectic growth patterns in confined geometry, The 3 rd International Conference on Advances in Solidification Processes 7–10 June 2011, Rolduc Abbey, Aachen, The Netherlands (IOP Conference Series: Materials Science and Engineering), Volume 27, IOP Science (2012), 012030 | DOI

[34] R. Folch; Mathis Plapp Quantitative phase-field modeling of two-phase solidification, Phys. Rev. E, Volume 72 (2005) no. 1, 011602 | DOI

[35] Melis Şerefloğlu; R. E. Napolitano; Mathis Plapp Phase-field investigation of rod eutectic morphologies under geometrical confinement, Phys. Rev. E, Volume 84 (2011), 011614 | DOI

[36] Silvère Akamatsu; Sabine Bottin-Rousseau; Gabriel Faivre Experimental evidence for a zigzag bifurcation in bulk lamellar eutectic growth, Phys. Rev. Lett., Volume 93 (2004) no. 17, 175701 | DOI

[37] Lord Rayleigh Instability of Jets, Philos. Mag., Volume 36 (1878), p. 4

[38] F. A. Nichols; W. W. Mullins Surface-(Interface-) and volume-diffusion contributions to morphological changes driven by capillarity, Transactions of the Metallurgical Society of AIME, Volume 233 (1965) no. 10, pp. 1840-1848

[39] Sumeet Khanna; Shanmukha Kiran Aramanda; Abhik Choudhury Role of Solid–Solid Interfacial Energy Anisotropy in the Formation of Broken Lamellar Structures in Eutectic Systems, Metall. Mater. Trans. A, Volume 51 (2020), pp. 6327-6345 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Eutectic solidification patterns: Interest of microgravity environment

Mathis Plapp; Sabine Bottin-Rousseau; Gabriel Faivre; ...

C. R. Méca (2017)


The trajectory of subboundary grooves during directional solidification of dilute alloys

Gabriel Faivre; Sabine Bottin-Rousseau; Silvère Akamatsu

C. R. Phys (2013)