[Croissance équiaxe de dendrites Al–Cu en interaction dans des échantillons minces : une étude de champ de phase à des concentrations de cuivre pertinentes pour des applications pratiques]
We perform three-dimensional phase-field simulations of equiaxed solidification in Al–Cu thin samples. Purely diffusive conditions are considered in order to describe systems where convection and gravity effects can be neglected. The use of a parallel adaptive finite element algorithm introduced recently [Gong et al., Comput. Mater. Sci. 147 (2018) p. 338-352] allows us to reach the domain of copper concentrations used in practical applications (
Nous réalisons des simulations de type champ de phase tri-dimensionnel de la solidification equiaxe dans les échantillons minces d’Al–Cu. Des conditions purement diffusives sont considérées pour décrire des systèmes où la convection et la gravité peuvent être négligées. L’utilisation d’un algorithme parallèle adaptatif de type éléments finis proposé récemment [Gong et al., Comput. Mater. Sci. 147 (2018) p. 338-352] nous permet d’atteindre le domaine des concentrations en cuivre utisées dans les applications pratiques (
Révisé le :
Accepté le :
Première publication :
Publié le :
Mots-clés : Métaux et alliages, Solidification, Diffusion des solutés, Structure des grains, Champ de phase, Microgravité
Tong Zhao Gong 1 ; Ahmed Kaci Boukellal 2 ; Yun Chen 1 ; Jean-Marc Debierre 3

@article{CRMECA_2023__351_S2_233_0, author = {Tong Zhao Gong and Ahmed Kaci Boukellal and Yun Chen and Jean-Marc Debierre}, title = {Equiaxed growth of interacting {Al{\textendash}Cu} dendrites in thin samples: a~phase-field study at copper concentrations relevant for practical applications}, journal = {Comptes Rendus. M\'ecanique}, pages = {233--247}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S2}, year = {2023}, doi = {10.5802/crmeca.145}, language = {en}, }
TY - JOUR AU - Tong Zhao Gong AU - Ahmed Kaci Boukellal AU - Yun Chen AU - Jean-Marc Debierre TI - Equiaxed growth of interacting Al–Cu dendrites in thin samples: a phase-field study at copper concentrations relevant for practical applications JO - Comptes Rendus. Mécanique PY - 2023 SP - 233 EP - 247 VL - 351 IS - S2 PB - Académie des sciences, Paris DO - 10.5802/crmeca.145 LA - en ID - CRMECA_2023__351_S2_233_0 ER -
%0 Journal Article %A Tong Zhao Gong %A Ahmed Kaci Boukellal %A Yun Chen %A Jean-Marc Debierre %T Equiaxed growth of interacting Al–Cu dendrites in thin samples: a phase-field study at copper concentrations relevant for practical applications %J Comptes Rendus. Mécanique %D 2023 %P 233-247 %V 351 %N S2 %I Académie des sciences, Paris %R 10.5802/crmeca.145 %G en %F CRMECA_2023__351_S2_233_0
Tong Zhao Gong; Ahmed Kaci Boukellal; Yun Chen; Jean-Marc Debierre. Equiaxed growth of interacting Al–Cu dendrites in thin samples: a phase-field study at copper concentrations relevant for practical applications. Comptes Rendus. Mécanique, Physical Science in Microgravity within the Thematic Group Fundamental and Applied Microgravity, Volume 351 (2023) no. S2, pp. 233-247. doi : 10.5802/crmeca.145. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.145/
[1] Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A, Volume 280 (2000), pp. 37-49 | DOI
[2] Aluminum Alloy Castings: Properties, Processes and Applications, AMS International, Materials Park, OH, 2004 | DOI
[3] Aluminum Alloys: Structure and Properties, Butterwoths, London, 1976, pp. 693-758 | DOI
[4] Scaling laws governing the growth and interaction of equiaxed Al–Cu dendrites: A study combining experiments with phase-field simulations, Materialia, Volume 1 (2018), pp. 62-69 | DOI
[5] New Visions on Form and Growth: Fingered Growth, Dendrites, and Flames, Oxford University Press, New York, 2004
[6] Fast simulations of a large number of crystals growth in centimeter-scale during alloy solidification via nonlinearly preconditioned quantitative phase-field formula, Comput. Mater. Sci., Volume 147 (2018), pp. 338-352 | DOI
[7] Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification, Acta Mater., Volume 54 (2006), pp. 2015-2026 | DOI
[8] Phase field and analytical study of mushy zone solidification in a static thermal gradient: From dendrites to planar front, Acta Mater., Volume 122 (2017), pp. 310-321 | DOI
[9] Microstructure selection in thin-sample directional solidification of an Al–Cu alloy: In situ X-ray imaging and phase-field simulations, Acta Mater., Volume 129 (2017), pp. 203-216 | DOI
[10] Phase-field model of isothermal solidification with multiple grain growth, Chin. Phys. B, Volume 18 (2009), pp. 1985-1991 | DOI
[11] Quantitative phase-field simulation of dendritic equiaxed growth and comparison with in situ observation on Al–4 wt.% Cu alloy by means of synchrotron X-ray radiography, ISIJ Int., Volume 54 (2014), pp. 445-451 | DOI
[12] Growth and interaction of dendritic equiaxed grains: In situ characterization by synchrotron X-ray radiography, Acta Mater., Volume 61 (2013), pp. 1303-1315 | DOI
[13] Nonlinear preconditioning for diffuse interfaces, J. Comput. Phys., Volume 174 (2001), pp. 695-711 | DOI | Zbl
[14] Crystal growth in a channel: Pulsating fingers, merry-go-round patterns, and seesaw dynamics, Phys. Rev. E, Volume 88 (2013), 042407
[15] Spatiotemporal dynamics of oscillatory cellular patterns in three-dimensional directional solidification, Phys. Rev. Lett., Volume 110 (2013), 226102 | DOI
[16] Directional solidification of inclined structures in thin samples, Acta Mater., Volume 74 (2014), pp. 255-267 | DOI
[17] Equilibrium and growth facetted shapes in isothermal solidification of silicon: 3D phase-field simulations, J. Cryst. Growth, Volume 522 (2019), pp. 37-44 | DOI
[18] Phase-field formulation for quantitative modeling of alloy solidification, Phys. Rev. Lett., Volume 87 (2001), 115701 | DOI
[19] Quantitative phase-field model of alloy solidification, Phys. Rev. E, Volume 70 (2004), 061604 | DOI
[20] Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, Volume 57 (1998), pp. 4323-4349 | DOI | Zbl
[21] Method for computing the anisotropy of the solid-liquid interfacial free energy, Phys. Rev. Lett., Volume 86 (2001), pp. 5530-5533 | DOI
[22] The deal.II Library, Version 8.4, J. Numer. Math., Volume 24 (2016), pp. 135-141 | DOI | MR | Zbl
[23] Reference document for deal.II https://www.dealii.org/developer/doxygen/deal.II/Tutorial.html (2016-03-15)
[24] The step-22 tutorial program https://www.dealii.org/current/doxygen/deal.II/step_22.html#Results (2022-06-23)
[25] Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Metals Park, OH, 1973, pp. 151-153
[26] Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2010
[27] Tip dynamics for equiaxed Al–Cu dendrites in thin samples: Phase-field study of thermodynamic effects, Comput. Mater. Sci., Volume 186 (2021), 110051 | DOI
[28] Free dendritic tip growth velocities measured in Al–Ge, Phys. Rev. Mater., Volume 2 (2018), 073405
[29] A comparative in situ X-radiography and DNN model study of solidification characteristics of an equiaxed dendritic Al-Ge alloy sample, Acta Mater., Volume 201 (2020), pp. 286-302 | DOI
[30] Investigation of gravity effects on solidification of binary alloys with in situ X-ray radiography on earth and in microgravity environment, J. Phys. Conf. Ser., Volume 327 (2011), 012012 | DOI
- Scaling law for growth of misoriented equiaxed Al-Cu dendrites: A phase-field study with in situ experiment validation, Computational Materials Science, Volume 226 (2023), p. 112238 | DOI:10.1016/j.commatsci.2023.112238
Cité par 1 document. Sources : Crossref
Commentaires - Politique