Comptes Rendus
A new experimental set-up for aerosol stability investigations in microgravity conditions
Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 183-197.

The temporal and spatial evolution of dispersed media is a fundamental problem in a wide range of physicochemical systems, such as emulsions, suspensions and aerosols. These systems are multiphasic and involve compounds of different densities. They are therefore subject to the influence of gravity which determines the sedimentation rate of their dispersed phase. This effect can be dominant and prevent a detailed study of the phenomena occurring between the constituents themselves, such as the coalescence of drops in emulsions, the evaporation of droplets or the flocculation in suspensions. In this context, the Centre National d’Etudes Spatiales (CNES) has recently supported the development of a new instrument to produce populations of droplets, a few micrometers in radius, under controlled conditions with the objective of allowing a detailed study of their properties in microgravity conditions. The principle of this instrument is to generate, by a fast compression/expansion of air, populations of water droplets and to track their evolution by optical scanning tomography in transmission mode within a volume of approximately 2 mm 3 . Parabolic flight experiments have shown the possibility to generate and accurately follow the evolution of populations of several hundred droplets for more than 20 s. The first experimental results show that it is possible to study their evaporation kinetics or their motion when imposing von Karman swirling flows. This work is part of the AEROSOL project of DECLIC-EVO supported by CNES and aims to help the understanding of cloud microphysics which remains a critical open problem in the context of global warming.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.159
Keywords: Droplets, Microgravity, Microscopy, Tomography, von Karman swirling flow

Charles Graziani 1; Mathieu Nespoulous 1; Renaud Denoyel 1; Stephan Fauve 2; Christian Chauveau 3; Luc Deike 4; Mickaël Antoni 1

1 Aix-Marseille Univ, CNRS, MADIREL, Marseille, France
2 LP ENS-Paris, France
3 CNRS–ICARE, University Orléans, France
4 MAE/HMEI, Princeton University, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_S2_183_0,
     author = {Charles Graziani and Mathieu Nespoulous and Renaud Denoyel and Stephan Fauve and Christian Chauveau and Luc Deike and Micka\"el Antoni},
     title = {A new experimental set-up for aerosol stability investigations in microgravity conditions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {183--197},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.159},
     language = {en},
}
TY  - JOUR
AU  - Charles Graziani
AU  - Mathieu Nespoulous
AU  - Renaud Denoyel
AU  - Stephan Fauve
AU  - Christian Chauveau
AU  - Luc Deike
AU  - Mickaël Antoni
TI  - A new experimental set-up for aerosol stability investigations in microgravity conditions
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 183
EP  - 197
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.159
LA  - en
ID  - CRMECA_2023__351_S2_183_0
ER  - 
%0 Journal Article
%A Charles Graziani
%A Mathieu Nespoulous
%A Renaud Denoyel
%A Stephan Fauve
%A Christian Chauveau
%A Luc Deike
%A Mickaël Antoni
%T A new experimental set-up for aerosol stability investigations in microgravity conditions
%J Comptes Rendus. Mécanique
%D 2023
%P 183-197
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.159
%G en
%F CRMECA_2023__351_S2_183_0
Charles Graziani; Mathieu Nespoulous; Renaud Denoyel; Stephan Fauve; Christian Chauveau; Luc Deike; Mickaël Antoni. A new experimental set-up for aerosol stability investigations in microgravity conditions. Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 183-197. doi : 10.5802/crmeca.159. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.159/

[1] R. Gunn; G. D. Kinzer The terminal velocity of fall for water droplets in stagnant air, J. Meteorol., Volume 6 (1949) no. 4, pp. 243-248 | DOI

[2] A. C. Best Empirical formulae for the terminal velocity of water drops falling through the atmosphere, Q. J. R. Meteorol. Soc., Volume 76 (1950) no. 329, pp. 302-311 | DOI

[3] N. Davidson et al. Measurement of the Raman spectra and hygroscopicity of four pharmaceutical aerosols as they travel from pressurised metered dose inhalers (pMDI) to a model lung, Int. J. Pharm., Volume 520 (2017) no. 1-2, pp. 59-69 | DOI

[4] I. Márquez-Sillero; E. Aguilera-Herrador; S. Cárdenas; M. Valcárcel Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system, J. Chromatogr. A., Volume 1217 (2010) no. 1, pp. 1-6 | DOI

[5] K. Du; H. Xie; G. Hu; Z. Peng; Y. Cao; F. Yu Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying coating with Nano-Al 2 O 3 , ACS Appl. Mater. Interfaces, Volume 8 (2016) no. 27, pp. 17713-17720 | DOI

[6] V. Caratelli; G. Fegatelli; D. Moscone; F. Arduini A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: A flower-like origami biosensor for precision agriculture, Biosens. Bioelectron., Volume 205 (2022), 114119 | DOI

[7] U. Lohmann; L. Rotstayn; T. Storelvmo; A. Jones; S. Menon; J. Quaas; A. M. L. Ekman; D. Koch; R. Ruedy Total aerosol effect: radiative forcing or radiative flux perturbation?, Atmos. Chem. Phys., Volume 10 (2010) no. 7, pp. 3235-3246 | DOI

[8] B. N. Holben; D. Tanré; A. Smirnov; T. F. Eck; I. Slutsker; N. Abuhassan; W. W. Newcomb; J. S. Schafer; B. Chatenet; F. Lavenu; Y. J. Kaufman; J. V. Castle; A. Setzer; B. Markham; D. Clark; R. Frouin; R. Halthore; A. Karneli; N. T. O’Neill; C. Pietras; R. T. Pinker; K. Voss; G. Zibordi An emerging ground-based aerosol climatology: aerosol optical depth from AERONET, J. Geophys. Res., Volume 106 (2001) no. D11, pp. 12067-12097 | DOI

[9] L. A. Remer; R. G. Kleidman; R. C. Levy; Y. J. Kaufman; D. Tanré; S. Mattoo; J. V. Martins; C. Ichoku; I. Koren; H. Yu; B. N. Holben Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res., Volume 113 (2008) no. D14, D14S07 | DOI

[10] R. A. Bagnold The Physics of Blown Sand and Dust and Desert Dunes, William Morrow, New-York, 1942

[11] R. Gunn; G. D. Kinzer The terminal velocity of fall for water droplets in stagnant air, J. Meteorol., Volume 6 (1949), pp. 243-248 | DOI

[12] Y. Vilsanen; R. Strey; H. Reiss Homogeneous nucleation rates for water, J. Chem. Phys., Volume 99 (1993), pp. 4680-4692 | DOI

[13] A. Dillmann; G. E. A. Meier A refined droplet approach to the problem of homogeneous nucleation from the vapor phase, J. Chem. Phys., Volume 94 (1991), pp. 3872-3884 | DOI

[14] R. Miller; R. J. Anderson; J. L. Kassner; D. E. Hagen Homogeneous nucleation rate measurements for water over a wide range of temperature and nucleation rate, J. Chem. Phys., Volume 78 (1983), pp. 3204-3211 | DOI

[15] S. R. Arridge Optical tomography in medical imaging, Inverse Probl., Volume 15 (1999) no. 2, p. R41-R93 | DOI | MR | Zbl

[16] S. R. Arridge; J. C. Schotland Optical tomography: forward and inverse problems, Inverse Probl., Volume 25 (2009) no. 12, 123010 | DOI | MR | Zbl

[17] U. S. Kamilov; I. N. Papadopoulos; M. H. Shoreh; A. Goy; C. Vonesch; M. Unser; D. Psaltis Learning approach to optical tomography, Optica, Volume 2 (2015) no. 6, pp. 517-522 | DOI

[18] M. Schmitt; S. Limage; D. O. Grigoriev; J. Krägel; V. Dutschk; S. Vincent-Bonnieu; R. Miller; M. Antoni Transition from spherical to irregular dispersed phase in water/oil emulsions, Langmuir, Volume 30 (2014) no. 16, pp. 4599-4604 | DOI

[19] M. Schmitt; S. Limage; R. Denoyel; M. Antoni Effect of SPAN80 on the structure of emulsified aqueous suspensions, Colloids Surf. A, Volume 521 (2017), pp. 121-132 | DOI

[20] P. J. Zandbergen; D. Dijkstra Von Karman swirling flows, Annu. Rev. Fluid Mech., Volume 19 (1987) no. 1, pp. 465-491 | DOI | Zbl

[21] S. Douady; Y. Couder; M.-E. Brachet Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett., Volume 67 (2007) no. 8, pp. 983-986 | DOI

[22] R. Labbé; J.-F. Pinton; S. Fauve Study of the von Karman flow between coaxial corotating disks, Phys. Fluids, Volume 8 (1996), pp. 914-922 | DOI

[23] L. Dufour; R. Defay Thermodynamics of clouds, Bull. Am. Meteorol. Soc., Volume 46 (1965) no. 10, pp. 674-676

[24] Y.-Y. Su; R. E. H. Miles; Z.-M. Li; J. P. Reid; J. Xu The evaporation kinetics of pure water droplets at varying drying rates and the use of evaporation rates to infer the gas phase relative humidity, Phys. Chem. Chem. Phys., Volume 20 (2018), pp. 23453-23466 | DOI

[25] N. R. Devlin; K. Loehr; M. T. Harris The importance of gravity in droplet evaporation: A comparison of pendant and sessile drop evaporation with particles, AIChE J., Volume 62 (2016), pp. 947-955 | DOI

[26] D. Brutin; Z.-Q. Zhu; O. Rahli; J.-C. Xie; Q.-S. Liu; L. Tadrist Sessile drop in microgravity: creation, contact angle and interface, Microgravity Sci. Technol., Volume 21 (2009), pp. 67-76 | DOI

[27] Z.-Q. Zhu; D. Brutin; Q.-S. Liu; Y. Wang; A. Mourembles; J.-C. Xie; L. Tadrist Experimental investigation of pendant and sessile drops in microgravity, Microgravity Sci. Technol., Volume 22 (2010), pp. 339-345 | DOI

[28] M. Brandenbourger; H. Caps; Y. Vitry; S. Dorbolo Microgravity Sci. Technol., 29 (2017), pp. 229-239 | DOI

Cited by Sources:

Comments - Policy