Comptes Rendus
Lattice Fluid Dynamics: Thirty-five Years Down the Road
Comptes Rendus. Mécanique, Online first (2022), pp. 1-12.

We discuss the role and impact of lattice fluid dynamics, namely Lattice Gas Cellular Automata and lattice Boltzmann, on the general framework of Computational Fluid Dynamics.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crmeca.161
Keywords: Physics of Fluids, Computational Fluid Dynamics, Discrete-Velocity Models, Lattice Gas, Lattice Boltzmann, Statistical Physics, High-Performance Computing

Sauro Succi 1, 2, 3

1 Center for Life Nano-NeuroScience at La Sapienza, Italian Institute of Technology, Viale Regina Elena 295, 00161, Roma, Italy
2 Physics Department, Harvard University, Oxford Str 17, 02138, Cambridge, USA
3 Mechanical Engineering Department, University College London,Gower Street, London WC1E 6BT, United Kingdom
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_S1_A14_0,
     author = {Sauro Succi},
     title = {Lattice {Fluid} {Dynamics:} {Thirty-five} {Years} {Down} the {Road}},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2022},
     doi = {10.5802/crmeca.161},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Sauro Succi
TI  - Lattice Fluid Dynamics: Thirty-five Years Down the Road
JO  - Comptes Rendus. Mécanique
PY  - 2022
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crmeca.161
LA  - en
ID  - CRMECA_2022__350_S1_A14_0
ER  - 
%0 Journal Article
%A Sauro Succi
%T Lattice Fluid Dynamics: Thirty-five Years Down the Road
%J Comptes Rendus. Mécanique
%D 2022
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crmeca.161
%G en
%F CRMECA_2022__350_S1_A14_0
Sauro Succi. Lattice Fluid Dynamics: Thirty-five Years Down the Road. Comptes Rendus. Mécanique, Online first (2022), pp. 1-12. doi : 10.5802/crmeca.161.

[1] U. Frisch; B. Hasslacher; Y. Pomeau Lattice gas automata for the Navier–Stokes equations, Phys. Rev. Lett., Volume 56 (1986) no. 14, pp. 1505-1508 | DOI | Zbl

[2] S. Wolfram Cellular automaton 1: basic theory, J. Stat. Phys., Volume 45 (1986) no. 3-4, pp. 471-526 | DOI | MR | Zbl

[3] P. J. Hills Discovery in Flow Dynamics May Aid Car, Plane Design, Washington Post (Nov 19, 1985)

[4] M. Henon Viscosity of a lattice Gas, Complex Systems, Volume 1 (1987) no. 4, pp. 736-739 | MR | Zbl

[5] Sauro Succi The lattice Boltzmann equation for fluid dynamics and beyond, Numerical Mathematics and Scientific Computation, Oxford University Press, 2001

[6] Sauro Succi The lattice Boltzmann equation for complex states of flowing matter, Oxford University Press, 2018 | DOI

[7] Cyrus Aidun; Jonathan Clausen Lattice Boltzmann method for complex flows, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 439-472 | DOI | MR | Zbl

[8] James E. Broadwell Shock structure in a simple discrete velocity gas, Phys. Fluids, Volume 7 (1964), pp. 1243-1247 | DOI | Zbl

[9] Renée Gatignol Théorie cinétique d’un gaz répartition discrète de vitesses, Lecture Notes in Physics, 36, Springer, 1975 | MR

[10] Roberto Monaco; Luigi Preziosi Fluid dynamic applications of the discrete Boltzmann equation, Series on Advances in Mathematics for Applied Sciences, 3, World Scientific, 1991 | DOI

[11] Tadeusz Platkowski; Reinhard Illner Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory, SIAM Rev., Volume 30 (1988), pp. 213-255 | DOI | MR | Zbl

[12] Guy R. McNamara; Gianluigi Zanetti Use of the Boltzmann equation to simulate lattice gas automata, Phys. Rev. Lett., Volume 61 (1988) no. 20, pp. 2332-2335 | DOI

[13] F. Higuera; Sauro Succi Simulating the flow around a circular cylinder with a lattice Boltzmann equation, Eur. Phys. Lett., Volume 8 (1989) no. 6, pp. 517-521 | DOI

[14] F. Higuera; J. Jimenez Boltzmann approach to lattice gas simulations, Eur. Phys. Lett., Volume 9 (1989) no. 7, pp. 663-668 | DOI

[15] F. Higuera; Sauro Succi; Roberto Benzi Lattice gas with enhanced collisions, Eur. Phys. Lett., Volume 9 (1989) no. 4, pp. 345-389 | DOI

[16] Roberto Benzi; Sauro Succi; M. Vergassola The lattice Boltzmann equation: theory and applications, Phys. Rep., Volume 222 (1992) no. 3, pp. 145-197 | DOI

[17] Hudong Chen; Shiyi Chen; William H. Matthaeus Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, Volume 45 (1992) no. 8, p. R5339-R5342 | DOI

[18] Shiyi Chen; Hudong Chen; Daniel Martnez; William H. Matthaeus Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., Volume 67 (1991) no. 27, pp. 3776-3779 | DOI

[19] J. M. Koelman A simple lattice Boltzmann scheme for Navier–Stokes fluid flow, Eur. Phys. Lett., Volume 15 (1991) no. 6, pp. 603-607 | DOI

[20] Y. Qian; Dominique d’Humières; P. Lallemand Lattice BGK models for the Navier–Stokes equation, Eur. Phys. Lett., Volume 17 (1992) no. 6, pp. 479-484 | DOI | Zbl

[21] Dominique d’Humieres; I. Ginzburg; M. et al. Krafczyk Multi Relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans. R. Soc. Lond., Ser. A, Volume 360 (2002) no. 1792, pp. 437-451 | DOI | Zbl

[22] Iliya V. Karlin; A. Ferrante; C. Oettinger Perfect entropies in the lattice Boltzmann method, Eur. Phys. Lett., Volume 47 (1999) no. 2, pp. 182-188 | DOI

[23] Xiaoyi He; Li-Shi Luo Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, Volume 56 (1997) no. 6, pp. 6811-6817 | DOI

[24] Zhaoli Guo; Chuguang Zheng; Baochang Shi Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, Volume 65 (2002) no. 4, 046308 | DOI | Zbl

[25] Sauro Succi Lattice Boltzmann across scales: from turbulence to DNA translocation, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 64 (2008), pp. 471-479 | DOI

[26] F. J. Alexander; Shiyi Chen; J. D. Sterling Lattice Boltzmann thermohydrodynamic, Phys. Rev. E, Volume 47 (1993) no. 4, p. R2249-R2252 | DOI

[27] Xiaoyi He; Shiyi Chen; Gary D. Doolen A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit, J. Comput. Phys., Volume 146 (1998) no. 1, pp. 282-300 | DOI | MR | Zbl

[28] Marco Sbragaglia; Roberto Benzi; Luca Biferale; Hudong Chen; X. Shan; Sauro Succi Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria, J. Fluid Mech., Volume 628 (2009), pp. 299-309 | DOI | MR | Zbl

[29] L. R. Weih; A. Gabbana; D. Simeoni; L. Rezzolla; Sauro Succi; R. Tripiccione Beyond Moments: relativistic Lattice Boltzmann methods for radiative transport in computational astrophysics, Mon. Not. Roy. Astron. Soc., Volume 498 (2020) no. 3, pp. 3374-3394 | DOI

[30] Sauro Succi Lattice Boltzmann 2038, Eur. Phys. Lett., Volume 109 (2015) no. 5, 50001 | DOI

[31] Sydney Chapman; T. G. Cowling The mathematical theory of non-uniform gases, Cambridge Mathematical Library, Cambridge University Press, 1990

[32] Hudong Chen; Satheesh Kandasamy; Rick Orzsag; Sauro Succi; Victor Yakhot Extended Boltzmann Kinetic Equation for Turbulent Flows, Science, Volume 301 (2003) no. 5633, pp. 633-636 | DOI

[33] Roberto Benzi; Sauro Succi Two-dimensional turbulence with the lattice Boltzmann equation, J. Phys. A, Math. Gen., Volume 23 (1990) no. 1, p. L1-L5 | DOI

[34] Jonas Latt; Orestis Malaspinas; Dimitrios Kontaxakis; Andrea Parmigiani; Daniel Lagrava; Federico Brogi; Mohamed Ben Belgacem; Yann Thorimbert; Sébastien Leclaire; Sha Li; Francesco Marson; Jonathan Lemus; Christos Kotsalos; Raphaël Conradin; Christophe Coreixas; Rémy Petkantchin; Franck Raynaud; Joël Beny; Bastien Chopard Palabos: parallel lattice Boltzmann solver, Comput. Math. Appl., Volume 81 (2021), pp. 334-350 | DOI | MR | Zbl

[35] SIMULIA PowerFLOW – Computational Fluid Dynamics Simulation Software Improving Product Design & Development, 2021 (https://www.3ds.com/products-services/simulia/products/powerflow/)

[36] S. S. Chikatamarla; C. E. Frouzakis; Iliya V. Karlin; A. G. Tomboulides; K. B. Boulouchos Lattice Boltzmann method for direct numerical simulation of turbulent flows, J. Fluid Mech., Volume 656 (2010), pp. 298-308 | DOI | Zbl

[37] Orestis Malaspinas; Pierre Sagaut Consistent subgrid scale modelling for lattice Boltzmann methods, J. Fluid Mech., Volume 700 (2010), pp. 514-542 | DOI | MR | Zbl

[38] Pierre Sagaut Toward advanced subgrid models for Lattice-Boltzmann-based Large-eddy simulation: Theoretical formulations, Comput. Math. Appl., Volume 59 (2010) no. 7, pp. 2194-2199 | DOI | MR | Zbl

[39] Naliganahalli H. Maruthi; Chakradhar Thantanapally; Manjusha Namburi; Viswanathan Kumaran; Santosh Ansumali LES/DNS of flow past T106 LPT cascade using a higher-order LB model (2022) (https://arxiv.org/abs/2204.02191)

[40] Prasad Perlekar; Luca Biferale; Mauro Sbragaglia; Sudhir Srivastava; Federico Toschi Droplet size distribution in homogeneous isotropic turbulence, Phys. Fluids, Volume 24 (2012) no. 6, 065101 | DOI

[41] Qinjung Kang; Peter C. Lichtner; David R. Janecky Lattice Boltzmann Method for Reacting Flows in Porous Media, Adv. Appl. Math. Mech., Volume 2 (2010) no. 5, pp. 545-563 | DOI | MR

[42] Giacomo Falcucci; Sauro Succi; Andrea Montessori; Simone Melchionna; Pietro Prestininzi; Cedric Barroo; David C. Bell; Monika M. Biener; Juergen Biener; Branko Zugic; Efthimios Kaxiras Mapping reactive flow patterns in monolithic nanoporous catalysts, Microfluid Nanofluid, Volume 20 (2016) no. 7, 105, pp. 1-13 | DOI

[43] Timm Krüger; Kusmaatmaja; Kuzmin; Orest Shardt; Goncalo Silva; Erlend Magnus Viggen The Lattice Boltzmann Method. Principles and Practice, Graduate Texts in Physics, Springer, 2017 | DOI

[44] Xiaowen Shan; Hudong Chen Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, Volume 47 (1993) no. 3, pp. 1815-1819 | DOI

[45] Michael R. Swift; W. R. Osborn; J. M. Yeomans Lattice Boltzmann Simulation of Nonideal Fluids, Phys. Rev. Lett., Volume 75 (1995) no. 5, pp. 830-833 | DOI

[46] Giacomo Falcucci; Stefano Ubertini; Chiara Biscarini; Silvia Di Francesco; Daniele Chiappini; Silvia Palpacelli; Alessandro De Maio; Sauro Succi Lattice Boltzmann methods for multiphase flow simulations across scales, Commun. Comput. Phys., Volume 9 (2011) no. 2, pp. 269-296 | DOI | Zbl

[47] Andrea Montessori; Adriano Tiribocchi; Marco Lauricella; Fabio Bonaccorso; Sauro Succi Mesoscale modelling of droplets’ self-assembly in microfluidic channels, Soft Matter, Volume 17 (2021) no. 9, pp. 2374-2383 | DOI

[48] Fabio Bonaccorso; Marco Lauricella; Andrea Montessori; Giorgio Amati; Massimo Bernaschi; Filippo Spiga; Tiribocchi Andriano; Sauro Succi LBcuda: a high-performance CUDA port of LBsoft for simulation of colloidal systems (2021) (https://arxiv.org/abs/2112.08264)

[49] Andrew K. Gunstensen; Daniel H. Rothman; Stéphane Zaleski; Gianluigi Zanetti Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, Volume 43 (1991) no. 8, pp. 4320-4327 | DOI

[50] Andrea Montessori; Marco Lauricella; N. Tirelli; Sauro Succi Mesoscale modelling of near-contact interactions for complex flowing interfaces, J. Fluid Mech., Volume 872 (2019), pp. 327-347 | DOI | MR | Zbl

[51] Andrea Montessori; Adriano Tiribocchi; Marco Lauricella; Fabio Bonaccorso; Sauro Succi Wet to dry self-transitions in dense emulsions: From order to disorder and back, Phys. Rev. Fluids, Volume 6 (2021) no. 2, 023606 | DOI

[52] Li-Shi Luo Comment on “Discrete Boltzmann Equation for Microfluidics”, Phys. Rev. Lett., Volume 92 (2004) no. 13, 139401 | DOI

[53] Xiaowen Shan; Xue-Feng Yuan; Hudong Chen Kinetic theory representation of hydrodynamics: a way beyond the Navier-–Stokes equation, J. Fluid Mech., Volume 550 (2006), pp. 413-441 | DOI | MR | Zbl

[54] Santosh Ansumali; Iliya V. Karlin Kinetic boundary conditions in the lattice Boltzmann method, Phys. Rev. E, Volume 66 (2002) no. 2, 026311 | DOI | MR

[55] Andrea Montessori; Pietro Prestininzi; M. La Rocca; Sauro Succi Lattice Boltzmann approach for complex nonequilibrium flows, Phys. Rev. E, Volume 92 (2015) no. 4, 043308 | DOI

[56] Burkhard Duenweg; Anthony J. C. Ladd Lattice Boltzmann Simulations of Soft Matter Systems, Advanced Computer Simulation Approaches for Soft Matter Sciences III (Advances in Polymer Science), Volume 221, Springer, 2009, pp. 89-166 | DOI

[57] Marco Sbragaglia; Roberto Benzi; Luca Biferale; Sauro Succi; Federico Toschi Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows, Phys. Rev. Lett., Volume 97 (2006) no. 20, 204503 | DOI | Zbl

[58] Mauro Sbragaglia; Roberto Benzi; Luca Biferale; Sauro Succi; Kazu Sugiyama; Federico Toschi Generalized lattice Boltzmann method with multirange pseudopotential, Phys. Rev. E, Volume 75 (2007) no. 2, 026702 | DOI | MR

[59] Jonas Latt; Bastien Chopard Lattice Boltzmann method with regularized pre-collision distribution functions, Math. Comput. Simul., Volume 72 (2006) no. 2-6, pp. 165-168 | DOI | MR | Zbl

[60] Xiao-Dong Niu; Shi-Aki Hyodo; Toshihisa Munekata; Kazuhiko Suga Kinetic lattice Boltzmann method for microscale gas flows: Issues on boundary condition, relaxation time, and regularization, Phys. Rev. E, Volume 76 (2007) no. 3, 036711 | DOI

[61] Adriano Tiribocchi; Andrea Montessori; Marco Lauricella; Fabio Bonaccorso; Sauro Succi; S. Aime; M. Milani; D. A. Weitz The vortex-driven dynamics of droplets within droplets, Nat. Commun., Volume 12 (2021) no. 1, 82 | Zbl

[62] G. Di Staso; H. J. H. Clercx; Sauro Succi; Federico Toschi Dsmc-lbm mapping scheme for rarefied and non-rarefied gas flows, J. Comput. Sci., Volume 17 (2016) no. Part 2, pp. 357-369 | DOI | MR

[63] Anthony J. C. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical Foundations, J. Fluid Mech., Volume 271 (1994), pp. 285-309 | DOI | MR | Zbl

[64] Sauro Succi; Roberto Benzi Lattice Boltzmann equation for quantum mechanics, Physica D, Volume 69 (1993) no. 3-4, pp. 327-332 | DOI | MR | Zbl

[65] Paul J. Dellar; D. Lapitski Convergence of a three-dimensional quantum lattice Boltzmann scheme towards solutions of the Dirac equation, Philos. Trans. R. Soc. Lond., Ser. A, Volume 369 (2011) no. 1944, pp. 2155-2163 | DOI | MR | Zbl

[66] F. Fillion-Gourdeau; H. J. Herrmann; M. Mendoza; Sylvia Palpacelli; Sauro Succi Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation, Phys. Rev. Lett., Volume 111 (2013) no. 16, 160602 | DOI

[67] Jeffrey Yepez; George Vahala; Linda Vahala; Min Soe Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades, Phys. Rev. Lett., Volume 103 (2009) no. 8, 084501 | DOI

[68] M. Mendoza; B. M. Boghosian; H. J. Herrmann; Sauro Succi Fast Lattice Boltzmann solver for relativistic hydrodynamics, Phys. Rev. Lett., Volume 105 (2010) no. 1, 014502 | DOI

[69] M. Mendoza; H. J. Herrmann; Sauro Succi Preturbulent Regimes in Graphene Flow, Phys. Rev. Lett., Volume 106 (2011) no. 15, 156601 | DOI

[70] A. Gabbana; D. Simeoni; Sauro Succi; R. Tripiccione Relativistic Lattice Boltzmann methods: theory and applications, Phys. Rep., Volume 864 (2020) no. 3, pp. 1-63 | DOI | MR | Zbl

[71] A. Gabbana; V. Ambrus; D. Simeoni; Sauro Succi; R. Tripiccione Fast kinetic simulator for relativistic matter, Nat. Comp. Sci, Volume 2 (2022), p. 641–654 | DOI

[72] Giovanni Policastro; D. T. Son; A. Starinets Shear Viscosity of Strongly Coupled N=4 Supersymmetric Yang–Mills Plasma, Phys. Rev. Lett., Volume 87 (2001) no. 8, 081601 | DOI

[73] Massimo Bernaschi; Simone Melchionna; Sauro Succi; M. Fyta; Efthimios Kaxiras; J. K. Sircar MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations, Comput. Phys. Commun., Volume 180 (2009) no. 9, pp. 1495-1502 | DOI

[74] Massimo Bernaschi; M. Fatica; Simone Melchionna; Sauro Succi; Efthimios Kaxiras A flexible high‐performance Lattice Boltzmann GPU code for the simulations of fluid flows, complex geometries Concurrency and computation: practice and experiencE, Volume 22 (2010) no. 1, pp. 1-14 | DOI

[75] Massimo Bernaschi; M. Bisson; M. Fatica; Simone Melchionna 20 Petaflops simulations of proteins suspensions in crowding conditions, Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, ACM Press (2013), 2 | DOI

[76] M. D. Mazzeo; Peter V. Coveney HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries, Comput. Phys. Commun., Volume 178 (2008) no. 12, pp. 894-914 | DOI | MR | Zbl

[77] C. Feichtinger; S. Donath; H. Köstler; J. Götz; U. Rüde WaLBerla: HPC software design for computational engineering simulations, J. Comput. Sci., Volume 2 (2013) no. 2, pp. 105-112 | DOI

[78] waLBerla (https://walberla.net)

[79] Saad Alowayyed; Derek Groen; Peter V. Coveney; Alfons G. Hoekstra Multiscale computing in the exascale era S Alowayyed, J. Comput. Sci., Volume 22 (2017), pp. 15-25 | DOI

[80] Sauro Succi; G. Amati; Massimo Bernaschi; G. Falcucci; Marco Lauricella; Andrea Montessori Towards exascale lattice Boltzmann computing, Comput. Fluids, Volume 181 (2019), pp. 107-115 | DOI | MR | Zbl

[81] Giovanni Falcucci; Giorgio Amati; Pierluigi Fanelli; Vesselin K. Krastev; Giovanni Polverino; Maurizio Porfiri; Sauro Succi Extreme flow simulations reveal skeletal adaptations of deep-sea sponges, Nature, Volume 595 (2021) no. 7868, pp. 537-541 | DOI

[82] Aniruddha G. Shet; Shahajhan H. Sorathiya; Siddharth Krithivasan; Anand M. Deshpande; Bharat Kaul; Sunil D. Sherlekar; Santosh Ansumali Data structure and movement for lattice-based simulations, Phys. Rev. E, Volume 88 (2013) no. 1, 013314 | DOI

Cited by Sources:

Comments - Policy