We discuss the role and impact of lattice fluid dynamics, namely Lattice Gas Cellular Automata and lattice Boltzmann, on the general framework of Computational Fluid Dynamics.
Revised:
Accepted:
Online First:
Published online:
Sauro Succi 1, 2, 3
@article{CRMECA_2022__350_S1_207_0, author = {Sauro Succi}, title = {Lattice {Fluid} {Dynamics:} {Thirty-five} {Years} {Down} the {Road}}, journal = {Comptes Rendus. M\'ecanique}, pages = {207--218}, publisher = {Acad\'emie des sciences, Paris}, volume = {350}, number = {S1}, year = {2022}, doi = {10.5802/crmeca.161}, language = {en}, }
Sauro Succi. Lattice Fluid Dynamics: Thirty-five Years Down the Road. Comptes Rendus. Mécanique, More than a half century of Computational Fluid Dynamics, Volume 350 (2022) no. S1, pp. 207-218. doi : 10.5802/crmeca.161. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.161/
[1] Lattice gas automata for the Navier–Stokes equations, Phys. Rev. Lett., Volume 56 (1986) no. 14, pp. 1505-1508 | DOI | Zbl
[2] Cellular automaton 1: basic theory, J. Stat. Phys., Volume 45 (1986) no. 3-4, pp. 471-526 | DOI | MR | Zbl
[3] Discovery in Flow Dynamics May Aid Car, Plane Design, Washington Post (Nov 19, 1985)
[4] Viscosity of a lattice Gas, Complex Systems, Volume 1 (1987) no. 4, pp. 736-739 | MR | Zbl
[5] The lattice Boltzmann equation for fluid dynamics and beyond, Numerical Mathematics and Scientific Computation, Oxford University Press, 2001
[6] The lattice Boltzmann equation for complex states of flowing matter, Oxford University Press, 2018 | DOI
[7] Lattice Boltzmann method for complex flows, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 439-472 | DOI | MR | Zbl
[8] Shock structure in a simple discrete velocity gas, Phys. Fluids, Volume 7 (1964), pp. 1243-1247 | DOI | Zbl
[9] Théorie cinétique d’un gaz répartition discrète de vitesses, Lecture Notes in Physics, 36, Springer, 1975 | MR
[10] Fluid dynamic applications of the discrete Boltzmann equation, Series on Advances in Mathematics for Applied Sciences, 3, World Scientific, 1991 | DOI
[11] Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory, SIAM Rev., Volume 30 (1988), pp. 213-255 | DOI | MR | Zbl
[12] Use of the Boltzmann equation to simulate lattice gas automata, Phys. Rev. Lett., Volume 61 (1988) no. 20, pp. 2332-2335 | DOI
[13] Simulating the flow around a circular cylinder with a lattice Boltzmann equation, Eur. Phys. Lett., Volume 8 (1989) no. 6, pp. 517-521 | DOI
[14] Boltzmann approach to lattice gas simulations, Eur. Phys. Lett., Volume 9 (1989) no. 7, pp. 663-668 | DOI
[15] Lattice gas with enhanced collisions, Eur. Phys. Lett., Volume 9 (1989) no. 4, pp. 345-389 | DOI
[16] The lattice Boltzmann equation: theory and applications, Phys. Rep., Volume 222 (1992) no. 3, pp. 145-197 | DOI
[17] Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, Volume 45 (1992) no. 8, p. R5339-R5342 | DOI
[18] Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., Volume 67 (1991) no. 27, pp. 3776-3779 | DOI
[19] A simple lattice Boltzmann scheme for Navier–Stokes fluid flow, Eur. Phys. Lett., Volume 15 (1991) no. 6, pp. 603-607 | DOI
[20] Lattice BGK models for the Navier–Stokes equation, Eur. Phys. Lett., Volume 17 (1992) no. 6, pp. 479-484 | DOI | Zbl
[21] Multi Relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans. R. Soc. Lond., Ser. A, Volume 360 (2002) no. 1792, pp. 437-451 | DOI | Zbl
[22] Perfect entropies in the lattice Boltzmann method, Eur. Phys. Lett., Volume 47 (1999) no. 2, pp. 182-188 | DOI
[23] Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, Volume 56 (1997) no. 6, pp. 6811-6817 | DOI
[24] Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, Volume 65 (2002) no. 4, 046308 | DOI | Zbl
[25] Lattice Boltzmann across scales: from turbulence to DNA translocation, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 64 (2008), pp. 471-479 | DOI
[26] Lattice Boltzmann thermohydrodynamic, Phys. Rev. E, Volume 47 (1993) no. 4, p. R2249-R2252 | DOI
[27] A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit, J. Comput. Phys., Volume 146 (1998) no. 1, pp. 282-300 | DOI | MR | Zbl
[28] Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria, J. Fluid Mech., Volume 628 (2009), pp. 299-309 | DOI | MR | Zbl
[29] Beyond Moments: relativistic Lattice Boltzmann methods for radiative transport in computational astrophysics, Mon. Not. Roy. Astron. Soc., Volume 498 (2020) no. 3, pp. 3374-3394 | DOI
[30] Lattice Boltzmann 2038, Eur. Phys. Lett., Volume 109 (2015) no. 5, 50001 | DOI
[31] The mathematical theory of non-uniform gases, Cambridge Mathematical Library, Cambridge University Press, 1990
[32] Extended Boltzmann Kinetic Equation for Turbulent Flows, Science, Volume 301 (2003) no. 5633, pp. 633-636 | DOI
[33] Two-dimensional turbulence with the lattice Boltzmann equation, J. Phys. A, Math. Gen., Volume 23 (1990) no. 1, p. L1-L5 | DOI
[34] Palabos: parallel lattice Boltzmann solver, Comput. Math. Appl., Volume 81 (2021), pp. 334-350 | DOI | MR | Zbl
[35] PowerFLOW – Computational Fluid Dynamics Simulation Software Improving Product Design & Development, 2021 (https://www.3ds.com/products-services/simulia/products/powerflow/)
[36] Lattice Boltzmann method for direct numerical simulation of turbulent flows, J. Fluid Mech., Volume 656 (2010), pp. 298-308 | DOI | Zbl
[37] Consistent subgrid scale modelling for lattice Boltzmann methods, J. Fluid Mech., Volume 700 (2010), pp. 514-542 | DOI | MR | Zbl
[38] Toward advanced subgrid models for Lattice-Boltzmann-based Large-eddy simulation: Theoretical formulations, Comput. Math. Appl., Volume 59 (2010) no. 7, pp. 2194-2199 | DOI | MR | Zbl
[39] LES/DNS of flow past T106 LPT cascade using a higher-order LB model (2022) (https://arxiv.org/abs/2204.02191)
[40] Droplet size distribution in homogeneous isotropic turbulence, Phys. Fluids, Volume 24 (2012) no. 6, 065101 | DOI
[41] Lattice Boltzmann Method for Reacting Flows in Porous Media, Adv. Appl. Math. Mech., Volume 2 (2010) no. 5, pp. 545-563 | DOI | MR
[42] Mapping reactive flow patterns in monolithic nanoporous catalysts, Microfluid Nanofluid, Volume 20 (2016) no. 7, 105, pp. 1-13 | DOI
[43] The Lattice Boltzmann Method. Principles and Practice, Graduate Texts in Physics, Springer, 2017 | DOI
[44] Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, Volume 47 (1993) no. 3, pp. 1815-1819 | DOI
[45] Lattice Boltzmann Simulation of Nonideal Fluids, Phys. Rev. Lett., Volume 75 (1995) no. 5, pp. 830-833 | DOI
[46] Lattice Boltzmann methods for multiphase flow simulations across scales, Commun. Comput. Phys., Volume 9 (2011) no. 2, pp. 269-296 | DOI | Zbl
[47] Mesoscale modelling of droplets’ self-assembly in microfluidic channels, Soft Matter, Volume 17 (2021) no. 9, pp. 2374-2383 | DOI
[48] LBcuda: a high-performance CUDA port of LBsoft for simulation of colloidal systems (2021) (https://arxiv.org/abs/2112.08264)
[49] Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, Volume 43 (1991) no. 8, pp. 4320-4327 | DOI
[50] Mesoscale modelling of near-contact interactions for complex flowing interfaces, J. Fluid Mech., Volume 872 (2019), pp. 327-347 | DOI | MR | Zbl
[51] Wet to dry self-transitions in dense emulsions: From order to disorder and back, Phys. Rev. Fluids, Volume 6 (2021) no. 2, 023606 | DOI
[52] Comment on “Discrete Boltzmann Equation for Microfluidics”, Phys. Rev. Lett., Volume 92 (2004) no. 13, 139401 | DOI
[53] Kinetic theory representation of hydrodynamics: a way beyond the Navier-–Stokes equation, J. Fluid Mech., Volume 550 (2006), pp. 413-441 | DOI | MR | Zbl
[54] Kinetic boundary conditions in the lattice Boltzmann method, Phys. Rev. E, Volume 66 (2002) no. 2, 026311 | DOI | MR
[55] Lattice Boltzmann approach for complex nonequilibrium flows, Phys. Rev. E, Volume 92 (2015) no. 4, 043308 | DOI
[56] Lattice Boltzmann Simulations of Soft Matter Systems, Advanced Computer Simulation Approaches for Soft Matter Sciences III (Advances in Polymer Science), Volume 221, Springer, 2009, pp. 89-166 | DOI
[57] Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows, Phys. Rev. Lett., Volume 97 (2006) no. 20, 204503 | DOI | Zbl
[58] Generalized lattice Boltzmann method with multirange pseudopotential, Phys. Rev. E, Volume 75 (2007) no. 2, 026702 | DOI | MR
[59] Lattice Boltzmann method with regularized pre-collision distribution functions, Math. Comput. Simul., Volume 72 (2006) no. 2-6, pp. 165-168 | DOI | MR | Zbl
[60] Kinetic lattice Boltzmann method for microscale gas flows: Issues on boundary condition, relaxation time, and regularization, Phys. Rev. E, Volume 76 (2007) no. 3, 036711 | DOI
[61] The vortex-driven dynamics of droplets within droplets, Nat. Commun., Volume 12 (2021) no. 1, 82 | Zbl
[62] Dsmc-lbm mapping scheme for rarefied and non-rarefied gas flows, J. Comput. Sci., Volume 17 (2016) no. Part 2, pp. 357-369 | DOI | MR
[63] Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical Foundations, J. Fluid Mech., Volume 271 (1994), pp. 285-309 | DOI | MR | Zbl
[64] Lattice Boltzmann equation for quantum mechanics, Physica D, Volume 69 (1993) no. 3-4, pp. 327-332 | DOI | MR | Zbl
[65] Convergence of a three-dimensional quantum lattice Boltzmann scheme towards solutions of the Dirac equation, Philos. Trans. R. Soc. Lond., Ser. A, Volume 369 (2011) no. 1944, pp. 2155-2163 | DOI | MR | Zbl
[66] Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation, Phys. Rev. Lett., Volume 111 (2013) no. 16, 160602 | DOI
[67] Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades, Phys. Rev. Lett., Volume 103 (2009) no. 8, 084501 | DOI
[68] Fast Lattice Boltzmann solver for relativistic hydrodynamics, Phys. Rev. Lett., Volume 105 (2010) no. 1, 014502 | DOI
[69] Preturbulent Regimes in Graphene Flow, Phys. Rev. Lett., Volume 106 (2011) no. 15, 156601 | DOI
[70] Relativistic Lattice Boltzmann methods: theory and applications, Phys. Rep., Volume 864 (2020) no. 3, pp. 1-63 | DOI | MR | Zbl
[71] Fast kinetic simulator for relativistic matter, Nat. Comp. Sci, Volume 2 (2022), p. 641–654 | DOI
[72] Shear Viscosity of Strongly Coupled Supersymmetric Yang–Mills Plasma, Phys. Rev. Lett., Volume 87 (2001) no. 8, 081601 | DOI
[73] MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations, Comput. Phys. Commun., Volume 180 (2009) no. 9, pp. 1495-1502 | DOI
[74] A flexible high‐performance Lattice Boltzmann GPU code for the simulations of fluid flows, complex geometries Concurrency and computation: practice and experiencE, Volume 22 (2010) no. 1, pp. 1-14 | DOI
[75] 20 Petaflops simulations of proteins suspensions in crowding conditions, Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, ACM Press (2013), 2 | DOI
[76] HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries, Comput. Phys. Commun., Volume 178 (2008) no. 12, pp. 894-914 | DOI | MR | Zbl
[77] WaLBerla: HPC software design for computational engineering simulations, J. Comput. Sci., Volume 2 (2013) no. 2, pp. 105-112 | DOI
[78] waLBerla (https://walberla.net)
[79] Multiscale computing in the exascale era S Alowayyed, J. Comput. Sci., Volume 22 (2017), pp. 15-25 | DOI
[80] Towards exascale lattice Boltzmann computing, Comput. Fluids, Volume 181 (2019), pp. 107-115 | DOI | MR | Zbl
[81] Extreme flow simulations reveal skeletal adaptations of deep-sea sponges, Nature, Volume 595 (2021) no. 7868, pp. 537-541 | DOI
[82] Data structure and movement for lattice-based simulations, Phys. Rev. E, Volume 88 (2013) no. 1, 013314 | DOI
Cited by Sources:
Comments - Policy