The numerical simulation of multiscale and multiphysics problems requires efficient tools for spatial localization and model reduction. A general strategy combining Domain Decomposition and Nonuniform Transformation Field Analysis (NTFA) is proposed herein for the simulation of nuclear fuel assemblies at the scale of a full nuclear reactor. The model at subdomain level solves the full elastic problem but with a reduced nonlinear loading, based on simplified boundary conditions, reduced creep flow rules, projected sign preserving contact conditions, and a NTFA like reduced friction law to get the evolution of each slipping mode. With this loading reduction, the local solution can be explicitly obtained from a small set of precomputed elementary elastic solutions. The numerical tests indicate that considerable cost reduction (a factor of 50 to 1000) can be achieved while preserving engineering accuracy.
La simulation numérique de problèmes multi-échelles et multi-physiques nécessite des outils performants de localisation spatiale et de réduction de modèle. Une stratégie générale combinant la décomposition de domaine et l’analyse de champ de transformation non uniforme (NTFA) est proposée ici pour la simulation d’assemblages de combustible nucléaire à l’échelle d’un réacteur nucléaire complet. Le modèle au niveau du sous-domaine résout le problème élastique complet mais avec un chargement non linéaire réduit, basé sur des conditions aux limites simplifiées, des règles d’écoulement de fluage réduites, des conditions de contact préservant le signe projeté et une loi de frottement réduit de type NTFA pour obtenir l’évolution de chaque mode de glissement. Avec cette réduction de chargement, la solution locale peut être obtenue explicitement à partir d’un petit ensemble de solutions élastiques élémentaires précalculées. Les tests numériques indiquent qu’une réduction considérable des coûts (un facteur de 50 à 1000) peut être obtenue tout en préservant la précision du calcul.
Accepted:
Online First:
Published online:
Mots-clés : Réduction de modèle, Décomposition de domaines, Assemblage de combustible, fluage, contact
Bertrand Leturcq 1; Patrick Le Tallec 2
@article{CRMECA_2023__351_S1_573_0, author = {Bertrand Leturcq and Patrick Le Tallec}, title = {From {Domain} {Decomposition} to {Model} {Reduction} for {Large} {Nonlinear} {Structures}}, journal = {Comptes Rendus. M\'ecanique}, pages = {573--589}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.168}, language = {en}, }
TY - JOUR AU - Bertrand Leturcq AU - Patrick Le Tallec TI - From Domain Decomposition to Model Reduction for Large Nonlinear Structures JO - Comptes Rendus. Mécanique PY - 2023 SP - 573 EP - 589 VL - 351 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.168 LA - en ID - CRMECA_2023__351_S1_573_0 ER -
Bertrand Leturcq; Patrick Le Tallec. From Domain Decomposition to Model Reduction for Large Nonlinear Structures. Comptes Rendus. Mécanique, The scientific legacy of Roland Glowinski, Volume 351 (2023) no. S1, pp. 573-589. doi : 10.5802/crmeca.168. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.168/
[1] On numerical simulation of fuel assembly bow in pressurized water reactors, Nucl. Eng. Des., Volume 365 (2013), pp. 814-825 | DOI
[2] Multiscale mechanical model based on patient-specific geometry: application to early keratoconus development, J. Mech. Behav. Biomed. Mater., Volume 129 (2022), 105121 | DOI
[3] Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9, Society for Industrial and Applied Mathematics, 1989 | DOI | Zbl
[4] A fictitious domain approach for the direct simulation of incompressible fluid flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., Volume 169 (2001) no. 2, pp. 363-426 | DOI | Zbl
[5] Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Rev., Volume 21 (1979) no. 2, pp. 167-212 | DOI | MR | Zbl
[6] A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge-ampère equation in dimension two, ESAIM, Control Optim. Calc. Var., Volume 19 (2013) no. 3, pp. 780-810 | DOI | Numdam | Zbl
[7] Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer, 1984 | DOI | Zbl
[8] Variational upscaling for modeling state of strain-dependent behavior and stress-induced crystallization in rubber-like materials, Contin. Mech. Thermodyn., Volume 33 (2021), pp. 749-766 | DOI | MR
[9] NTFA inspired model order reduction including contact and friction, 14th. World Congress on Computationnal Mechanics (WCCM 14) (2021)
[10] A new reduced order model to represent the creep induced fuel assembly bow in PWR cores, Nucl. Eng. Des., Volume 394 (2022), 111828 | DOI
[11] Nonuniform transformation field analysis, Int. J. Solids Struct., Volume 40 (2003) no. 25, pp. 6937-6955 | DOI | MR | Zbl
[12] Evolution of fuel rod support under irradiation — Impact on the mechanical behaviour of fuel ssemblies, Structural behaviour of fuel assemblies for water cooled reactors – Proceedings of a technical meeting held in Cadarache, France, 22–26 November 2004, International Atomic Energy Agency (2005) no. IAEA-TECDOC-1454, pp. 101-112
[13] Mechanical analysis of the bow deformation of a row of fuel assemblies in a PWR core, Nucl. Eng. Technol., Volume 50 (2018) no. 2, pp. 297-305 | DOI
[14] Efficient solution of mechanical and biomechanical problems by domain decomposition, Numer. Linear Algebra Appl., Volume 6 (1999) no. 7, pp. 599-616 | DOI | MR | Zbl
[15] Transformation field analysis of inelastic composite materials, Proc. R. Soc. Lond., Ser. A, Volume 437 (1992) no. 1900, pp. 311-327 | MR | Zbl
[16] Finite deformation plasticity for composite structures: Computational models and adaptive strategies, Comput. Methods Appl. Mech. Eng., Volume 172 (1999) no. 1-4, pp. 145-174 | DOI | Zbl
[17] A model-reduction approach to the micromechanical analysis of polycrystalline materials, Comput. Mech., Volume 57 (2016) no. 3, pp. 483-508 | DOI | MR | Zbl
[18] Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis, Comput. Methods Appl. Mech. Eng., Volume 193 (2004) no. 48–51, pp. 5477-5502 | DOI | MR | Zbl
[19] Proper Orthogonal Decomposition And Its Applications—Part I: Theory, J. Sound Vib., Volume 252 (2002) no. 3, pp. 527-544 | DOI
[20] Projection-based model reduction for contact problems, Int. J. Numer. Methods Eng., Volume 106 (2016) no. 8, pp. 644-663 | DOI | MR | Zbl
[21] IRSN documentation, 2021 (https://www.irsn.fr/dechets/dechets-radioactifs/PublishingImages/assemblage-combustible.jpg)
[22] Evaluation of Fuel assembly Bow Penalty Peaking Factors for Ringhals 3 Based on a Cycle Specific Core Water Gap Distribution, Ph. D. Thesis, Uppsala Universitet, Sweden (2017) (http://www.diva-portal.org/smash/get/diva2:1166550/FULLTEXT01.pdf)
[23] Effect of Weld Properties on the Crush Strength of the PWR Spacer Grid, Sci. Technol. Nucl. Install., Volume 2012 (2012) no. 9-11, 540285, 12 pages | DOI
[24] Learning the Parts of Objects by Non-Negative Matrix Factorization, Nature, London, Volume 401 (1999) no. 6755, pp. 788-791 | DOI | Zbl
[25] Least squares formulation of robust non-negative factor analysis, Chemometr. Intell. Lab. Syst., Volume 37 (1997) no. 1, pp. 23-35 | DOI
[26] Réduction de modèles thermomécaniques non linéaires d’assemblages combustibles en vue d’un calcul de cœur REP, Ph. D. Thesis, Institut Polytechnique de Paris, Paris, France (2022)
Cited by Sources:
Comments - Policy