Comptes Rendus
From Domain Decomposition to Model Reduction for Large Nonlinear Structures
[De la décomposition de domaine à la réduction de modèle pour les grandes structures non linéaires]
Comptes Rendus. Mécanique, Online first (2023), pp. 1-17.

La simulation numérique de problèmes multi-échelles et multi-physiques nécessite des outils performants de localisation spatiale et de réduction de modèle. Une stratégie générale combinant la décomposition de domaine et l’analyse de champ de transformation non uniforme (NTFA) est proposée ici pour la simulation d’assemblages de combustible nucléaire à l’échelle d’un réacteur nucléaire complet. Le modèle au niveau du sous-domaine résout le problème élastique complet mais avec un chargement non linéaire réduit, basé sur des conditions aux limites simplifiées, des règles d’écoulement de fluage réduites, des conditions de contact préservant le signe projeté et une loi de frottement réduit de type NTFA pour obtenir l’évolution de chaque mode de glissement. Avec cette réduction de chargement, la solution locale peut être obtenue explicitement à partir d’un petit ensemble de solutions élastiques élémentaires précalculées. Les tests numériques indiquent qu’une réduction considérable des coûts (un facteur de 50 à 1000) peut être obtenue tout en préservant la précision du calcul.

The numerical simulation of multiscale and multiphysics problems requires efficient tools for spatial localization and model reduction. A general strategy combining Domain Decomposition and Nonuniform Transformation Field Analysis (NTFA) is proposed herein for the simulation of nuclear fuel assemblies at the scale of a full nuclear reactor. The model at subdomain level solves the full elastic problem but with a reduced nonlinear loading, based on simplified boundary conditions, reduced creep flow rules, projected sign preserving contact conditions, and a NTFA like reduced friction law to get the evolution of each slipping mode. With this loading reduction, the local solution can be explicitly obtained from a small set of precomputed elementary elastic solutions. The numerical tests indicate that considerable cost reduction (a factor of 50 to 1000) can be achieved while preserving engineering accuracy.

Reçu le :
Accepté le :
Première publication :
DOI : 10.5802/crmeca.168
Keywords: Model reduction, Domain decomposition, Nuclear fuel assemblies, creep, contact
Mot clés : Réduction de modèle, Décomposition de domaines, Assemblage de combustible, fluage, contact
Bertrand Leturcq 1 ; Patrick Le Tallec 2

1 Université Paris-Saclay, CEA, Service d’études mécaniques et thermiques, 91191 Gif-sur-Yvette, France
2 M3DISIM/LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S1_A15_0,
     author = {Bertrand Leturcq and Patrick Le Tallec},
     title = {From {Domain} {Decomposition} to {Model} {Reduction} for {Large} {Nonlinear} {Structures}},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crmeca.168},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Bertrand Leturcq
AU  - Patrick Le Tallec
TI  - From Domain Decomposition to Model Reduction for Large Nonlinear Structures
JO  - Comptes Rendus. Mécanique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crmeca.168
LA  - en
ID  - CRMECA_2023__351_S1_A15_0
ER  - 
%0 Journal Article
%A Bertrand Leturcq
%A Patrick Le Tallec
%T From Domain Decomposition to Model Reduction for Large Nonlinear Structures
%J Comptes Rendus. Mécanique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crmeca.168
%G en
%F CRMECA_2023__351_S1_A15_0
Bertrand Leturcq; Patrick Le Tallec. From Domain Decomposition to Model Reduction for Large Nonlinear Structures. Comptes Rendus. Mécanique, Online first (2023), pp. 1-17. doi : 10.5802/crmeca.168.

[1] Ákos Horváth; Bernd Dressel On numerical simulation of fuel assembly bow in pressurized water reactors, Nucl. Eng. Des., Volume 365 (2013), pp. 814-825 | DOI

[2] Giraudet C.; J. Diaz; Patrick Le Tallec; J. M. Allain Multiscale mechanical model based on patient-specific geometry: application to early keratoconus development, J. Mech. Behav. Biomed. Mater., Volume 129 (2022), 105121 | DOI

[3] Roland Glowinski; Patrick Le Tallec Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9, Society for Industrial and Applied Mathematics, 1989 | DOI | Zbl

[4] Roland Glowinski; Tsorng-Whay Pan; Todd I. Hesla; Daniel D. Joseph; Jacques F. Périaux A fictitious domain approach for the direct simulation of incompressible fluid flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., Volume 169 (2001) no. 2, pp. 363-426 | DOI | Zbl

[5] Roland Glowinski; Olivier Pironneau Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Rev., Volume 21 (1979) no. 2, pp. 167-212 | DOI | MR | Zbl

[6] Alexandre Caboussat; Roland Glowinski; Danny C. Sorensen A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge-ampère equation in dimension two, ESAIM, Control Optim. Calc. Var., Volume 19 (2013) no. 3, pp. 780-810 | DOI | Numdam | Zbl

[7] Roland Glowinski Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer, 1984 | DOI | Zbl

[8] Julie Diani; Patrick Le Tallec Variational upscaling for modeling state of strain-dependent behavior and stress-induced crystallization in rubber-like materials, Contin. Mech. Thermodyn., Volume 33 (2021), pp. 749-766 | DOI | MR

[9] Bertrand Leturcq; Patrick Le Tallec; Serge Pascal; Olivier Fandeur; Julien Pacull NTFA inspired model order reduction including contact and friction, 14th. World Congress on Computationnal Mechanics (WCCM 14) (2021)

[10] Bertrand Leturcq; Patrick Le Tallec; Serge Pascal; Olivier Fandeur; Nicolas Lamorte A new reduced order model to represent the creep induced fuel assembly bow in PWR cores, Nucl. Eng. Des., Volume 394 (2022), 111828 | DOI

[11] Jean-Claude Michel; Pierre-Marie Suquet Nonuniform transformation field analysis, Int. J. Solids Struct., Volume 40 (2003) no. 25, pp. 6937-6955 | DOI | MR | Zbl

[12] A. Billerey Evolution of fuel rod support under irradiation — Impact on the mechanical behaviour of fuel ssemblies, Structural behaviour of fuel assemblies for water cooled reactors – Proceedings of a technical meeting held in Cadarache, France, 22–26 November 2004, International Atomic Energy Agency (2005) no. IAEA-TECDOC-1454, pp. 101-112

[13] Andreas Wanninger; Marcus Seidl; Rafael Macián-Juan Mechanical analysis of the bow deformation of a row of fuel assemblies in a PWR core, Nucl. Eng. Technol., Volume 50 (2018) no. 2, pp. 297-305 | DOI

[14] Patrick Le Tallec; Marina Vidrascu Efficient solution of mechanical and biomechanical problems by domain decomposition, Numer. Linear Algebra Appl., Volume 6 (1999) no. 7, pp. 599-616 | DOI | MR | Zbl

[15] George J. Dvorak Transformation field analysis of inelastic composite materials, Proc. R. Soc. Lond., Ser. A, Volume 437 (1992) no. 1900, pp. 311-327 | MR | Zbl

[16] Jakob Fish; Kamlun Shek Finite deformation plasticity for composite structures: Computational models and adaptive strategies, Comput. Methods Appl. Mech. Eng., Volume 172 (1999) no. 1-4, pp. 145-174 | DOI | Zbl

[17] Jean-Claude Michel; Pierre-Marie Suquet A model-reduction approach to the micromechanical analysis of polycrystalline materials, Comput. Mech., Volume 57 (2016) no. 3, pp. 483-508 | DOI | MR | Zbl

[18] Jean-Claude Michel; Pierre-Marie Suquet Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis, Comput. Methods Appl. Mech. Eng., Volume 193 (2004) no. 48–51, pp. 5477-5502 | DOI | MR | Zbl

[19] Yanchun Liang; Heow Pueh Lee; Siakpiang Lim; Wuzhong Lin; Kwokhong Lee; Chunguo Wu Proper Orthogonal Decomposition And Its Applications—Part I: Theory, J. Sound Vib., Volume 252 (2002) no. 3, pp. 527-544 | DOI

[20] Maciej Balajewicz; David Amsallem; Charbel Farhat Projection-based model reduction for contact problems, Int. J. Numer. Methods Eng., Volume 106 (2016) no. 8, pp. 644-663 | DOI | MR | Zbl

[21] IRSN IRSN documentation, 2021 (https://www.irsn.fr/dechets/dechets-radioactifs/PublishingImages/assemblage-combustible.jpg)

[22] Anna Franzén Evaluation of Fuel assembly Bow Penalty Peaking Factors for Ringhals 3 Based on a Cycle Specific Core Water Gap Distribution, Ph. D. Thesis, Uppsala Universitet, Sweden (2017) (http://www.diva-portal.org/smash/get/diva2:1166550/FULLTEXT01.pdf)

[23] Kee-nam Song; Sang-hoon Lee Effect of Weld Properties on the Crush Strength of the PWR Spacer Grid, Sci. Technol. Nucl. Install., Volume 2012 (2012) no. 9-11, 540285, 12 pages | DOI

[24] Daniel D. Lee; Sebastian Seung Learning the Parts of Objects by Non-Negative Matrix Factorization, Nature, London, Volume 401 (1999) no. 6755, pp. 788-791 | DOI | Zbl

[25] Pentti Paatero Least squares formulation of robust non-negative factor analysis, Chemometr. Intell. Lab. Syst., Volume 37 (1997) no. 1, pp. 23-35 | DOI

[26] Bertrand Leturcq Réduction de modèles thermomécaniques non linéaires d’assemblages combustibles en vue d’un calcul de cœur REP, Ph. D. Thesis, Institut Polytechnique de Paris, Paris, France (2022)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Transient rolling friction model for discrete element simulations of sphere assemblies

Matthew R. Kuhn

C. R. Méca (2014)


On the creep deformation of nickel foams under compression

Anthony Burteau; Jean-Dominique Bartout; Yves Bienvenu; ...

C. R. Phys (2014)


Phenomenological nonlinear modelling of glassy polymers

Fahmi Zaïri; Krzysztof Woznica; Moussa Naït-Abdelaziz

C. R. Méca (2005)