[Nouvelles matrices pour le conditionnement des radioéléments à vie longue]
Les radioéléments à vie longue (Iode129, césium135 et actinides mineures) peuvent être incorporés dans des structures cristallines de matériaux spécifiques à haute durabilité chimique. Les apatites, la zirconolite, les monazites, le phosphate-diphosphate de thorium et la hollandite sont étudiés au CEA et dans le cadre d'un groupement de recherche (NOMADE). Une première étape est consacrée à la faisabilité scientifique visant à élaborer et caractériser les matériaux et à étudier leur durabilité chimique et leur comportement sous irradiation. Au stade actuel des recherches, le développement des apatites pour l'iode et les actinides, de la zirconolite, des monazites et du phosphate–diphosphate de thorium pour les actinides a atteint cette étape. Le conditionnement du césium dans la hollandite ou les minéraux phosphatés nécessite des développements supplémentaires.
Long-lived radionuclides such as I129, Cs135 and minor actinides can be incorporated in crystalline structures of several specific materials with high chemical durability. Apatites, zirconolite, monazites, thorium phosphate-diphosphate and hollandite are being studied at the CEA and among a scientific research group called NOMADE. A first step is devoted to the scientific feasibility dealing with elaboration and characterization of non-radioactive materials and studies of their chemical durability and radiation stability. Development of apatite for iodine and minor actinides, zirconolite for minor actinides, monazite for trivalent actinides and thorium phosphate–diphosphate for tetravalent actinides has reached the scientific feasibility. Cs conditioning in hollandite and phosphate minerals needs further studies.
Révisé le :
Publié le :
Mots-clés : déchets de haute activité, conditionnement, céramiques matrices
Christophe Guy 1 ; Fabienne Audubert 1 ; Jean-Eric Lartigue 1 ; Christelle Latrille 1 ; Thierry Advocat 2 ; Catherine Fillet 2
@article{CRPHYS_2002__3_7-8_827_0, author = {Christophe Guy and Fabienne Audubert and Jean-Eric Lartigue and Christelle Latrille and Thierry Advocat and Catherine Fillet}, title = {New conditionings for separated long-lived radionuclides}, journal = {Comptes Rendus. Physique}, pages = {827--837}, publisher = {Elsevier}, volume = {3}, number = {7-8}, year = {2002}, doi = {10.1016/S1631-0705(02)01377-4}, language = {en}, }
TY - JOUR AU - Christophe Guy AU - Fabienne Audubert AU - Jean-Eric Lartigue AU - Christelle Latrille AU - Thierry Advocat AU - Catherine Fillet TI - New conditionings for separated long-lived radionuclides JO - Comptes Rendus. Physique PY - 2002 SP - 827 EP - 837 VL - 3 IS - 7-8 PB - Elsevier DO - 10.1016/S1631-0705(02)01377-4 LA - en ID - CRPHYS_2002__3_7-8_827_0 ER -
%0 Journal Article %A Christophe Guy %A Fabienne Audubert %A Jean-Eric Lartigue %A Christelle Latrille %A Thierry Advocat %A Catherine Fillet %T New conditionings for separated long-lived radionuclides %J Comptes Rendus. Physique %D 2002 %P 827-837 %V 3 %N 7-8 %I Elsevier %R 10.1016/S1631-0705(02)01377-4 %G en %F CRPHYS_2002__3_7-8_827_0
Christophe Guy; Fabienne Audubert; Jean-Eric Lartigue; Christelle Latrille; Thierry Advocat; Catherine Fillet. New conditionings for separated long-lived radionuclides. Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 827-837. doi : 10.1016/S1631-0705(02)01377-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01377-4/
[1] T. Advocat, C. Fillet, F. Bart, G. Leturcq, F. Audubert, J.E. Lartigues, M. Bertolus, L. Campayo, C. Guy, in: Proceedings of the GLOBAL '01, International Conference on Back–End of the Fuel Cycle: From Research to Solutions, 9–13 September, 2001
[2] Solid State Ionics, 95 (1997), pp. 113-119
[3] Acta Crystallogr. C, 55 (1999), pp. 271-273
[4] J. Eur. Ceram. Soc., 20 (2000), pp. 1231-1240
[5] Powder Technol., 103 (1999), pp. 10-18
[6] Advances in Fission Track Geochronology (P. Van den Haute; F. de Corte, eds.), Kluwer Academic, Dordrecht, 1998, pp. 81-92
[7] Advances in Fission Track Geochronology (P. Van den Haute; F. de Corte, eds.), Kluwer Academic, Dordrecht, 1998, pp. 81-92
[8] L. Boyer, Thèse, INP Toulouse, 1998
[9] Acta Crystallogr. C, 54 (1998), pp. 1057-1059
[10] J. Alloys Compd., 311 (2000), pp. 143-152
[11] J. Nucl. Mater., 289 (2001), pp. 194-198
[12] Nucl. Intrum. Methods Phys. Res. B, 132 (1998), pp. 447-451
[13] Radiat. Eff. Defects Solids, 155 (2001), pp. 189-194
[14] J. Nucl. Mater., 299 (2001), pp. 227-234
[15] J. Nucl. Mater., 175 (1990), p. 58
[16] G. Leturcq, P.J. Mcglinn, K.P. Hart, T. Advocat, C. Barbe, G.R. Lumpkin, in: Scientific Basis for Nuclear Waste Management, XXIV Mater. Res. Soc. Symp. Proc., Sydney, 2001, under press
[17] Acers Fall Meeting Proceedings 1997, Cincinatti, Ceramic Transactions, 87, 1998, pp. 531-539
[18] Scientific Basis for Nuclear Waste Management, XXI Mater. Res. Soc. Symp. Proc., 506, 1998
[19] P. Loiseau, D. Caurant, N. Baffier, L. Mazerolles, C. Fillet, in: Scientific Basis for Nuclear Waste Management, XXIV Mater. Res. Soc. Symp. Proc., Sydney, 2001, under press
[20] P. Loiseau, D. Caurant, N. Baffier, C. Fillet, in: Scientific Basis for Nuclear Waste Management, XXIV Mater. Res. Soc. Symp. Proc., Sydney, 2001, under press
[21] T. Advocat, P.J. McGlinn, C Fillet, G. Leturcq, S. Schuller, A. Bonnetier, K. Hart, in: Scientific Basis for Nuclear Waste Management, XXIV Mater. Res. Soc. Symp. Proc., Sydney, 2001, under press
[22] P.J. Mcglinn, T. Advocat, E. Loi, G. Leturcq, J.P. Mestre, in: Scientific Basis for Nuclear Waste Management, XXIV Mater. Res. Soc. Symp. Proc., Sydney, 2001, under press
[23] Scientific Basis for Nuclear Waste Management, XVIII Mater. Res. Soc. Symp. Proc., 353, 1995, pp. 847-853
[24] Nucl. Chem. Waste Management, 2 (1981), pp. 287-305
[25] Am. Ceram. Bull., 65 (1986), pp. 1181-1187
[26] J. Nucl. Mater., 289 (2001), pp. 136-166
- Thermal Effects and Glass Crystallization in Composite Matrices for Immobilization of the Rare-Earth Element–Minor Actinide Fraction of High-Level Radioactive Waste, Journal of Composites Science, Volume 8 (2024) no. 2, p. 70 | DOI:10.3390/jcs8020070
- Iodine solid sorbent design: a literature review of the critical criteria for consideration, Materials Advances, Volume 5 (2024) no. 24, p. 9515 | DOI:10.1039/d4ma00266k
- Undetected perovskite phase interference with zirconolite dissolution measurements, npj Materials Degradation, Volume 8 (2024) no. 1 | DOI:10.1038/s41529-024-00475-5
- An Investigation of Iodovanadinite Wasteforms for the Immobilisation of Radio-Iodine and Technetium, Ceramics, Volume 6 (2023) no. 3, p. 1826 | DOI:10.3390/ceramics6030111
- Review and experimental comparison of the durability of iodine waste forms in semi-dynamic leach testing, Chemical Engineering Journal Advances, Volume 11 (2022), p. 100300 | DOI:10.1016/j.ceja.2022.100300
- Review of recent developments in iodine wasteform production, Frontiers in Chemistry, Volume 10 (2022) | DOI:10.3389/fchem.2022.1043653
- Lead-vanadate sorbents for iodine trapping and their conversion into an iodoapatite-based conditioning matrix, Frontiers in Chemistry, Volume 10 (2022) | DOI:10.3389/fchem.2022.1085868
- Cs3Bi2I9-hydroxyapatite composite waste forms for cesium and iodine immobilization, Journal of Advanced Ceramics, Volume 11 (2022) no. 5, p. 712 | DOI:10.1007/s40145-021-0565-z
- Structural integrity of Cs and Sr immobilized lacunar apatite phosphate simulated ceramic wasteform Na0.9Cs0.1Pb3Sr(PO4)3 under heat and aqueous flow, Journal of Nuclear Materials, Volume 558 (2022), p. 153388 | DOI:10.1016/j.jnucmat.2021.153388
- Crystalline phosphates for HLW immobilization - composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology, Journal of Nuclear Materials, Volume 559 (2022), p. 153407 | DOI:10.1016/j.jnucmat.2021.153407
- A novel Sr2Nd8(SiO4)6O2 glass-ceramics for rapid immobilization of FP and An3+ co-doped uranium tailings by microwave sintering: mechanism and performance, Journal of Nuclear Materials, Volume 563 (2022), p. 153640 | DOI:10.1016/j.jnucmat.2022.153640
- Inorganic Waste Forms for Efficient Immobilization of Radionuclides, ACS ES T Engineering, Volume 1 (2021) no. 8, p. 1149 | DOI:10.1021/acsestengg.1c00184
- Use of high-U hydrothermal apatite containing excess 206Pb to constrain the age of uranium mineralization at the Coles Hill deposit, Virginia, USA, Chemical Geology, Volume 584 (2021), p. 120509 | DOI:10.1016/j.chemgeo.2021.120509
- Recent Advances in Corrosion Science Applicable To Disposal of High-Level Nuclear Waste, Chemical Reviews, Volume 121 (2021) no. 20, p. 12327 | DOI:10.1021/acs.chemrev.0c00990
- Glasses and Glass-Ceramics for Nuclear Waste Immobilization, Encyclopedia of Materials: Technical Ceramics and Glasses (2021), p. 762 | DOI:10.1016/b978-0-12-818542-1.00090-4
- Immobilization of cesium and iodine into Cs3Bi2I9 perovskite-silica composites and core-shell waste forms with high waste loadings and chemical durability, Journal of Hazardous Materials, Volume 401 (2021), p. 123279 | DOI:10.1016/j.jhazmat.2020.123279
- Fabrication, chemical and thermal stability studies of crystalline ceramic wasteform based on oxyapatite phosphate host LaSr4(PO4)3O for high level nuclear waste immobilization, Journal of Hazardous Materials, Volume 394 (2020), p. 122552 | DOI:10.1016/j.jhazmat.2020.122552
- Spark plasma sintering-densified vanadinite apatite-based chlorine waste forms with high thermal stability and chlorine confinement, Journal of Nuclear Materials, Volume 528 (2020), p. 151857 | DOI:10.1016/j.jnucmat.2019.151857
- Chemical durability studies on multi rare earths immobilized simulated oxysilicate apatite wasteforms CaLa3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O and Ca0.8Sr0.1Pb0.1La3.4Ce0.1Pr0.1Nd0.1Sm0.1Gd0.1Y0.1(SiO4)3O, Journal of Radioanalytical and Nuclear Chemistry, Volume 326 (2020) no. 3, p. 1569 | DOI:10.1007/s10967-020-07436-7
- Iodine immobilization by materials through sorption and redox-driven processes: A literature review, Science of The Total Environment, Volume 716 (2020), p. 132820 | DOI:10.1016/j.scitotenv.2019.06.166
- Chemical Durability and Dissolution Kinetics of Iodoapatite in Aqueous Solutions, ACS Earth and Space Chemistry, Volume 3 (2019) no. 3, p. 452 | DOI:10.1021/acsearthspacechem.8b00162
- Cold sintering and durability of iodate-substituted calcium hydroxyapatite (IO-HAp) for the immobilization of radioiodine, Journal of Nuclear Materials, Volume 514 (2019), p. 84 | DOI:10.1016/j.jnucmat.2018.11.024
- Effect of solution chemistry on the iodine release from iodoapatite in aqueous environments, Journal of Nuclear Materials, Volume 525 (2019), p. 161 | DOI:10.1016/j.jnucmat.2019.07.034
- Molten salt reactor waste and effluent management strategies: A review, Nuclear Engineering and Design, Volume 345 (2019), p. 94 | DOI:10.1016/j.nucengdes.2019.02.002
- Dissolution kinetics of monazite LnPO4 (Ln = La to Gd): A multiparametric study, Applied Geochemistry, Volume 93 (2018), p. 81 | DOI:10.1016/j.apgeochem.2018.04.005
- Mechanism of iodine release from iodoapatite in aqueous solution, RSC Advances, Volume 8 (2018) no. 8, p. 3951 | DOI:10.1039/c7ra11049a
- A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals, npj Materials Degradation, Volume 2 (2018) no. 1 | DOI:10.1038/s41529-018-0037-2
- Wet chemical synthesis of apatite-based waste forms – A novel room temperature method for the immobilization of radioactive iodine, Journal of Materials Chemistry A, Volume 5 (2017) no. 27, p. 14331 | DOI:10.1039/c7ta00230k
- Durability testing of an iodate-substituted hydroxyapatite designed for the conditioning of 129 I, Journal of Nuclear Materials, Volume 484 (2017), p. 324 | DOI:10.1016/j.jnucmat.2016.10.047
- Incorporation of thorium in the rhabdophane structure: Synthesis and characterization of Pr 1-2x Ca x Th x PO 4 ·nH 2 O solid solutions, Journal of Nuclear Materials, Volume 492 (2017), p. 88 | DOI:10.1016/j.jnucmat.2017.05.019
- Materials and processes for the effective capture and immobilization of radioiodine: A review, Journal of Nuclear Materials, Volume 470 (2016), p. 307 | DOI:10.1016/j.jnucmat.2015.11.038
- Phase evolution and microstructural studies of Gd 1−x Yb x PO 4 (0 ≤ x ≤ 1) ceramics for radioactive waste storage, Journal of the European Ceramic Society, Volume 36 (2016) no. 3, p. 773 | DOI:10.1016/j.jeurceramsoc.2015.10.045
- Key parameters for spark plasma sintering of wet-precipitated iodate-substituted hydroxyapatite, Journal of the European Ceramic Society, Volume 36 (2016) no. 8, p. 2009 | DOI:10.1016/j.jeurceramsoc.2016.02.041
- Graphene-based sorbents for iodine-129 capture and sequestration, Carbon, Volume 90 (2015), p. 1 | DOI:10.1016/j.carbon.2015.03.070
- Relevance of the choice of spark plasma sintering parameters in obtaining a suitable microstructure for iodine-bearing apatite designed for the conditioning of I-129, Journal of Nuclear Materials, Volume 457 (2015), p. 63 | DOI:10.1016/j.jnucmat.2014.10.026
- Radiation Stability of Spark‐Plasma‐Sintered Lead Vanadate Iodoapatite, Journal of the American Ceramic Society, Volume 98 (2015) no. 10, p. 3361 | DOI:10.1111/jace.13738
- Dense Iodoapatite Ceramics Consolidated by Low‐Temperature Spark Plasma Sintering, Journal of the American Ceramic Society, Volume 98 (2015) no. 12, p. 3733 | DOI:10.1111/jace.13867
- French Studies on the Development of Potential Conditioning Matrices for Iodine 129, MRS Proceedings, Volume 1744 (2015), p. 15 | DOI:10.1557/opl.2015.309
- Microwave dielectric and thermal properties of mixed rare earth ortho phosphate [REmixPO4], Ceramics International, Volume 40 (2014) no. 8, p. 13075 | DOI:10.1016/j.ceramint.2014.05.004
- Immobilization of iodine into a hydroxyapatite structure prepared by cementation, J. Mater. Chem. A, Volume 2 (2014) no. 48, p. 20923 | DOI:10.1039/c4ta03236e
- Synthesis of lead vanadate iodoapatite utilizing dry mechanochemical process, Journal of Nuclear Materials, Volume 454 (2014) no. 1-3, p. 223 | DOI:10.1016/j.jnucmat.2014.07.073
- Investigation of the local environment of iodate in hydroxyapatite by combination of X-ray absorption spectroscopy and DFT modeling, RSC Adv., Volume 4 (2014) no. 28, p. 14700 | DOI:10.1039/c3ra47691j
- Facile low temperature solid state synthesis of iodoapatite by high-energy ball milling, RSC Adv., Volume 4 (2014) no. 73, p. 38718 | DOI:10.1039/c4ra05320f
- Pore-confined synthesis of mesoporous nanocrystalline La–Ce phosphate films for sensing applications, Journal of Materials Chemistry, Volume 22 (2012) no. 38, p. 20498 | DOI:10.1039/c2jm34566h
- High-temperature breakdown of the synthetic iodine analogue of vanadinite, Pb5(VO4)3I: an apatite-related compound for iodine radioisotope immobilization?, Mineralogical Magazine, Volume 76 (2012) no. 4, p. 997 | DOI:10.1180/minmag.2012.076.4.15
- Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine, Journal of Materials Chemistry, Volume 21 (2011) no. 44, p. 17609 | DOI:10.1039/c1jm14157k
- Rapid synthesis of Pb5(VO4)3I, for the immobilisation of iodine radioisotopes, by microwave dielectric heating, Journal of Nuclear Materials, Volume 414 (2011) no. 3, p. 352 | DOI:10.1016/j.jnucmat.2011.04.041
- Environmental Effects of Micro- and Ultra-microchannel Structures of Natural Minerals, Acta Geologica Sinica - English Edition, Volume 80 (2010) no. 2, p. 161 | DOI:10.1111/j.1755-6724.2006.tb00225.x
- Spark plasma sintering of iodine-bearing apatite, Journal of Nuclear Materials, Volume 400 (2010) no. 3, p. 251 | DOI:10.1016/j.jnucmat.2010.03.011
- Glass–ceramic nuclear waste forms obtained by crystallization of SiO2–Al2O3–CaO–ZrO2–TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface, Journal of Nuclear Materials, Volume 402 (2010) no. 1, p. 38 | DOI:10.1016/j.jnucmat.2010.04.021
- Kinetics of dissolution of thorium and uranium doped britholite ceramics, Journal of Nuclear Materials, Volume 404 (2010) no. 1, p. 33 | DOI:10.1016/j.jnucmat.2010.06.023
- Structural characterization of Nd-doped Hf-zirconolite Ca1−xNdxHfTi2−xAlxO7 ceramics, Journal of Nuclear Materials, Volume 407 (2010) no. 2, p. 88 | DOI:10.1016/j.jnucmat.2010.09.033
- Spark plasma sintering of lead phosphovanadate Pb3(VO4)1.6(PO4)0.4, Journal of the European Ceramic Society, Volume 29 (2009) no. 8, p. 1477 | DOI:10.1016/j.jeurceramsoc.2008.09.003
- The influence of silver on the properties of cryptomelane type manganese oxides in N2O decomposition reaction, Catalysis Today, Volume 137 (2008) no. 2-4, p. 397 | DOI:10.1016/j.cattod.2007.11.008
- Comparative Behavior of Britholites and Monazite/Brabantite Solid Solutions during Leaching Tests: A Combined Experimental and DFT Approach, Inorganic Chemistry, Volume 47 (2008) no. 23, p. 10971 | DOI:10.1021/ic801169d
- The high-temperature behaviour of PuPO4 monazite and some other related compounds, Journal of Nuclear Materials, Volume 378 (2008) no. 2, p. 167 | DOI:10.1016/j.jnucmat.2008.05.011
- Leaching of a zirconolite ceramic waste-form under proton and He2+ irradiation, Radiochimica Acta, Volume 96 (2008) no. 9-11, p. 619 | DOI:10.1524/ract.2008.1545
- A Facile Sol–Gel Strategy for the Synthesis of Rod‐Shaped Nanocrystalline High‐Surface‐Area Lanthanum Phosphate Powders and Nanocoatings, Advanced Functional Materials, Volume 17 (2007) no. 10, p. 1682 | DOI:10.1002/adfm.200600794
- Fluorapatite surface composition in aqueous solution deduced from potentiometric, electrokinetic, and solubility measurements, and spectroscopic observations, Geochimica et Cosmochimica Acta, Volume 71 (2007) no. 24, p. 5888 | DOI:10.1016/j.gca.2007.09.026
- Optimizing the formula of rare earth‐bearing materials: A computational chemistry investigation, International Journal of Quantum Chemistry, Volume 107 (2007) no. 3, p. 712 | DOI:10.1002/qua.21133
- Effect of Al2O3 concentration on zirconolite (Ca(Zr,Hf)Ti2O7) crystallization in (TiO2,ZrO2,HfO2)-rich SiO2–Al2O3–CaO–Na2O glasses, Journal of Materials Science, Volume 42 (2007) no. 20, p. 8558 | DOI:10.1007/s10853-007-1810-8
- Crystallization of CaHf1−xZrxTi2O7 (0 ≤ x ≤ 1) zirconolite in SiO2–Al2O3–CaO–Na2O–TiO2–HfO2–ZrO2–Nd2O3 glasses, Journal of Materials Science, Volume 42 (2007) no. 24, p. 10203 | DOI:10.1007/s10853-007-1979-x
- Perspectives on the closed fuel cycle – Implications for high-level waste matrices, Journal of Nuclear Materials, Volume 362 (2007) no. 2-3, p. 383 | DOI:10.1016/j.jnucmat.2007.01.210
- Synthesis and characterization of uranium-bearing britholites, Journal of Nuclear Materials, Volume 366 (2007) no. 1-2, p. 70 | DOI:10.1016/j.jnucmat.2006.12.047
- The chemistry of the phosphates of barium and tetravalent cations in the 1:1 stoichiometry, Journal of Solid State Chemistry, Volume 180 (2007) no. 8, p. 2346 | DOI:10.1016/j.jssc.2007.06.006
- Microstructural dependence of the thermal and mechanical properties of monazite LnPO4 (Ln=La to Gd), Journal of the European Ceramic Society, Volume 27 (2007) no. 10, p. 3207 | DOI:10.1016/j.jeurceramsoc.2006.12.005
- Impact of leach on lead vanado-iodoapatite [Pb5(VO4)3I]: An infrared and Raman spectroscopic study, Materials Science and Engineering: B, Volume 137 (2007) no. 1-3, p. 149 | DOI:10.1016/j.mseb.2006.11.003
- The use of a soaking procedure combined with the sintering process to reach a high cerium content in a cerium-bearing Y-britholite, Progress in Nuclear Energy, Volume 49 (2007) no. 4, p. 351 | DOI:10.1016/j.pnucene.2007.03.002
- Immobilization of tetravalent actinides in phosphate ceramics, Journal of Nuclear Materials, Volume 352 (2006) no. 1-3, p. 224 | DOI:10.1016/j.jnucmat.2006.02.058
- An experimental study of the dissolution rates of Nd-britholite, an apatite-structured actinide-bearing waste storage host analogue, Journal of Nuclear Materials, Volume 354 (2006) no. 1-3, p. 14 | DOI:10.1016/j.jnucmat.2006.01.022
- Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization, Journal of Nuclear Materials, Volume 354 (2006) no. 1-3, p. 143 | DOI:10.1016/j.jnucmat.2006.03.014
- Synthesis and characterization of thorium-bearing britholites, Journal of Nuclear Materials, Volume 354 (2006) no. 1-3, p. 49 | DOI:10.1016/j.jnucmat.2006.02.094
- Sintering and microstructure of rare earth phosphate ceramics REPO4 with RE=La, Ce or Y, Journal of the European Ceramic Society, Volume 26 (2006) no. 3, p. 279 | DOI:10.1016/j.jeurceramsoc.2004.11.004
- Enhancement of Zirconolite Dissolution Due to Water Radiolysis, MRS Proceedings, Volume 985 (2006) | DOI:10.1557/proc-985-0985-nn09-04
- Leaching of zirconolite ceramics under H+ and He2+ irradiation, Radiochimica Acta, Volume 94 (2006) no. 9-11, p. 585 | DOI:10.1524/ract.2006.94.9-11.585
- Glass–ceramic nuclear waste forms obtained from SiO2–Al2O3–CaO–ZrO2–TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): study of internal crystallization, Journal of Nuclear Materials, Volume 335 (2004) no. 1, p. 14 | DOI:10.1016/j.jnucmat.2004.05.020
- A Comparison of Wasteforms and Processes for the Immobilisation of Iodine-129, MRS Proceedings, Volume 807 (2003) | DOI:10.1557/proc-807-261
- Mechanical and thermal properties of hot pressed neodymium-substituted britholite Ca9Nd(PO4)5(SiO4)F2, Materials Letters, Volume 57 (2003) no. 22-23, p. 3526 | DOI:10.1016/s0167-577x(03)00120-4
Cité par 78 documents. Sources : Crossref
Commentaires - Politique