[Saut de pression et solutions stationnaires radiales de l’équation dégénérée de Cahn–Hilliard]
L’équation de Cahn–Hilliard avec mobilité dégénérée est utilisée dans différents domaines, en particulier la description de tissus vivants suivant la théorie des mélanges. Nous visons à quantifier le saut de pression à l’interface entre phases dans le cas de flots incompressibles. Pour cela, nous considérons des solutions à symmétrie radiale du problème compressible. Nous démontrons l’existence d’états stationnaires comme limite du problème d’évolution. Nous prouvons ensuite la limite incompressible et caratérisons les solutions à support compact. Ceci nous permet de calculer le saut de pression dans le régime de faible dispersion et en particulier d’obtenir la dépendance en la courbure suivant la force appliquée.
The Cahn–Hilliard equation with degenerate mobility is used in several areas including the modeling of living tissues, following the theory of mixtures. We are interested in quantifying the pressure jump at the interface between phases in the case of incompressible flows. To do so, we depart from the spherically symmetric dynamical compressible model and include an external force. We prove existence of stationary states as limits of the parabolic problems. Then we prove the incompressible limit and characterize compactly supported stationary solutions. This allows us to compute the pressure jump in the small dispersion regime and in particular the force dependent curvature effect.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Degenerate Cahn–Hilliard equation, Asymptotic Analysis, Incompressible limit, Hele–Shaw equations, Surface tension, Pressure jump
Mot clés : Equation de Cahn–Hilliard dégénérée, Analyse asymptotique, Limite incompressible, Equation de Hele–Shaw, Saut de pression
Charles Elbar 1 ; Benoît Perthame 1 ; Jakub Skrzeczkowski 2
@article{CRMECA_2023__351_S1_375_0, author = {Charles Elbar and Beno{\^\i}t Perthame and Jakub Skrzeczkowski}, title = {Pressure jump and radial stationary solutions of the degenerate {Cahn{\textendash}Hilliard} equation}, journal = {Comptes Rendus. M\'ecanique}, pages = {375--394}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.173}, language = {en}, }
TY - JOUR AU - Charles Elbar AU - Benoît Perthame AU - Jakub Skrzeczkowski TI - Pressure jump and radial stationary solutions of the degenerate Cahn–Hilliard equation JO - Comptes Rendus. Mécanique PY - 2023 SP - 375 EP - 394 VL - 351 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.173 LA - en ID - CRMECA_2023__351_S1_375_0 ER -
%0 Journal Article %A Charles Elbar %A Benoît Perthame %A Jakub Skrzeczkowski %T Pressure jump and radial stationary solutions of the degenerate Cahn–Hilliard equation %J Comptes Rendus. Mécanique %D 2023 %P 375-394 %V 351 %N S1 %I Académie des sciences, Paris %R 10.5802/crmeca.173 %G en %F CRMECA_2023__351_S1_375_0
Charles Elbar; Benoît Perthame; Jakub Skrzeczkowski. Pressure jump and radial stationary solutions of the degenerate Cahn–Hilliard equation. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 375-394. doi : 10.5802/crmeca.173. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.173/
[1] Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel model, Commun. Math. Sci., Volume 20 (2022) no. 7, pp. 1901-1926 | DOI | MR | Zbl
[2] Finite speed of propagation for the cahn-hilliard equation with degenerate mobility, Appl. Anal., Volume 100 (2021) no. 8, pp. 1693-1726 | DOI | MR | Zbl
[3] Modelling solid tumour growth using the theory of mixtures, Math. Med. Biol., Volume 20 (2003) no. 4, pp. 341-366 | DOI | Zbl
[4] Mathematical analysis and challenges arising from models of tumor growth, Math. Models Methods Appl. Sci., Volume 17 (2007) no. Suppl., pp. 1751-1772 | DOI | MR | Zbl
[5] Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, Volume 23 (2010) no. 1, p. R1-R9 | DOI | MR | Zbl
[6] Individual-based and continuum models of growing cell populations: a comparison, J. Math. Biol., Volume 58 (2009) no. 4, pp. 657-687 | DOI | MR | Zbl
[7] The Hele-Shaw asymptotics for mechanical models of tumor growth, Arch. Ration. Mech. Anal., Volume 212 (2014) no. 1, pp. 93-127 | DOI | MR | Zbl
[8] Uniform convergence for the incompressible limit of a tumor growth model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1321-1354 | MR | Zbl
[9] Existence and incompressible limit of a tissue growth model with autophagy, SIAM J. Math. Anal., Volume 53 (2021) no. 5, pp. 5215-5242 | MR | Zbl
[10] Homeostatic competition drives tumor growth and metastasis nucleation, HFSP Journal, Volume 3 (2009) no. 4, pp. 265-272 | DOI
[11] Dynamics of anisotropic tissue growth, New J. Phys. (2008) no. 10, 063001, p. 6 | DOI
[12] Incompressible limit of a mechanical model of tumour growth with viscosity, Philos. Trans. R. Soc. Lond., Ser. A, Volume 373 (2015) no. 2050, 20140283, 16 pages | MR | Zbl
[13] Classical solutions for Hele-Shaw models with surface tension, Adv. Differ. Equ., Volume 2 (1997) no. 4, pp. 619-642 | MR | Zbl
[14] Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Ration. Mech. Anal., Volume 128 (1994) no. 2, pp. 165-205 | DOI | MR | Zbl
[15] Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differ. Geom., Volume 44 (1996) no. 2, pp. 262-311 | MR | Zbl
[16] Three-dimensional multispecies nonlinear tumor growth—II: Tumor invasion and angiogenesis, J. Theor. Biol., Volume 264 (2010) no. 4, pp. 1254-1278 | DOI | MR | Zbl
[17] Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture, New J. Phys., Volume 13 (2011), 115013, 22 pages | DOI
[18] Mechanistic modeling of vascular tumor growth: an extension of biot’s theory to hierarchical bi-compartment porous medium systems, Acta Mech., Volume 232 (2021) no. 4, pp. 1445-1478 | DOI | MR | Zbl
[19] A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., Volume 26 (2016) no. 6, pp. 1095-1148 | DOI | MR | Zbl
[20] A Cahn-Hilliard-type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., Volume 40 (2017) no. 18, pp. 7598-7626 | DOI | MR | Zbl
[21] A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 3, pp. 525-577 | DOI | MR | Zbl
[22] On a multi-species Cahn-Hilliard-Darcy tumor growth model with singular potentials, Commun. Math. Sci., Volume 16 (2018) no. 3, pp. 821-856 | DOI | MR | Zbl
[23] On a Cahn-Hilliard-Brinkman model for tumor growth and its singular limits, SIAM J. Math. Anal., Volume 51 (2019) no. 3, pp. 1868-1912 | DOI | MR | Zbl
[24] Cahn-Hilliard-Brinkman systems for tumour growth, Discrete Contin. Dyn. Syst., Volume 14 (2021) no. 11, pp. 3989-4033 | DOI | MR | Zbl
[25] Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility, Eur. J. Appl. Math., Volume 32 (2021) no. 1, pp. 89-112 | DOI | MR | Zbl
[26] Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., Volume 28 (1958) no. 2, pp. 258-267 | DOI | Zbl
[27] The Cahn-Hilliard equation. Recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 95, Society for Industrial and Applied Mathematics, 2019 | DOI | Zbl
[28] Radial symmetric solutions of the Cahn-Hilliard equation with degenerate mobility, Electron, J. Qual. Theory Differ. Equ., Volume 2001 (2001) no. 2, 2, 14 pages | DOI | MR | Zbl
[29] On the Cahn-Hilliard equation with nonlinear principal part, J. Partial Differ. Equations, Volume 7 (1994) no. 1, pp. 77-96 | MR | Zbl
[30] Pressure jump and radial stationary solutions of the degenerate Cahn-Hilliard equation.Extended version (2022) (https://hal.science/hal-03696545v3)
Cité par Sources :
Commentaires - Politique