Comptes Rendus
Article de recherche
A Bound Preserving Energy Stable Scheme for a Nonlocal Cahn–Hilliard Equation
[Un schéma stable préservant l’énergie pour une équation de Cahn–Hilliard non locale]
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 239-250.

Nous présentons un schéma numérique basé sur les volumes finis pour une équation de Cahn–Hilliard non locale qui combine des idées de schémas numériques récents pour les équations de flot de gradient et les équations de Cahn–Hilliard non locales. L’équation en question est un cas particulier d’un système d’équations précédemment dérivé et étudié qui décrit la séparation des phases dans les mélanges ternaires. Nous prouvons que le schéma est à la fois stable sur le plan énergétique et qu’il respecte les limites analytiques de la solution. En outre, nous présentons des démonstrations numériques des résultats théoriques en utilisant les potentiels d’énergie libre de Flory–Huggins (FH) et de Ginzburg–Landau (GL).

We present a finite-volume based numerical scheme for a nonlocal Cahn–Hilliard equation which combines ideas from recent numerical schemes for gradient flow equations and nonlocal Cahn–Hilliard equations. The equation of interest is a special case of a previously derived and studied system of equations which describes phase separation in ternary mixtures. We prove the scheme is both energy stable and respects the analytical bounds of the solution. Furthermore, we present numerical demonstrations of the theoretical results using both the Flory–Huggins (FH) and Ginzburg–Landau (GL) free-energy potentials.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmeca.265
Classification : 65M08, 35R09, 35Q70
Keywords: Nonlocal Cahn–Hilliard equation, gradient flow, finite-volume method, bound preserving energy stable schemes
Mot clés : Équation de Cahn–Hilliard non locale, flot de gradient, méthode des volumes finis, schémas stables de préservation de l’énergie

Rainey Lyons 1 ; Adrian Muntean 1 ; Grigor Nika 1

1 Department of Mathematics and Computer Science, Karlstad University, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2024__352_G1_239_0,
     author = {Rainey Lyons and Adrian Muntean and Grigor Nika},
     title = {A {Bound} {Preserving} {Energy} {Stable} {Scheme} for a {Nonlocal} {Cahn{\textendash}Hilliard} {Equation}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {239--250},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.265},
     language = {en},
}
TY  - JOUR
AU  - Rainey Lyons
AU  - Adrian Muntean
AU  - Grigor Nika
TI  - A Bound Preserving Energy Stable Scheme for a Nonlocal Cahn–Hilliard Equation
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 239
EP  - 250
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.265
LA  - en
ID  - CRMECA_2024__352_G1_239_0
ER  - 
%0 Journal Article
%A Rainey Lyons
%A Adrian Muntean
%A Grigor Nika
%T A Bound Preserving Energy Stable Scheme for a Nonlocal Cahn–Hilliard Equation
%J Comptes Rendus. Mécanique
%D 2024
%P 239-250
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.265
%G en
%F CRMECA_2024__352_G1_239_0
Rainey Lyons; Adrian Muntean; Grigor Nika. A Bound Preserving Energy Stable Scheme for a Nonlocal Cahn–Hilliard Equation. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 239-250. doi : 10.5802/crmeca.265. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.265/

[1] O. Axelsson; P. Boyanova; M. Kronbichler; M. Neytcheva; X. Wu Numerical and computational efficiency of solvers for two-phase problems, Comput. Math. Appl., Volume 65 (2013) no. 3, pp. 301-314 | DOI | Zbl

[2] R. Bailo; J. A. Carrillo; J. Hu Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient-flow structure, Commun. Math. Sci., Volume 18 (2020) no. 5, pp. 1259-1303 | DOI | Zbl

[3] R. Bailo; J. A. Carrillo; S. Kalliadasis; S. P. Perez Unconditional bound-preserving and energy-dissipating finite-volume schemes for the Cahn–Hilliard equation, Commun. Comput. Phys., Volume 34 (2023) no. 3, pp. 713-748 | DOI | Zbl

[4] P. Boyanova; M. Neytcheva Efficient numerical solution of discrete multi-component Cahn–Hilliard systems, Comput. Math. Appl., Volume 67 (2014) no. 1, pp. 106-121 | DOI | Zbl

[5] C. Creton; M. Ciccotti Fracture and adhesion of soft materials: a review, Rep. Prog. Phys., Volume 79 (2016) no. 4, 046601 | DOI

[6] J. A. Carrillo; Y.-P. Choi; M. Hauray The derivation of swarming models: mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation (A. Muntean; F. Toschi, eds.) (CISM International Centre for Mechanical Sciences), Volume 553, Springer: Vienna, 2014, pp. 1-46 | DOI

[7] J. A. Carrillo; A. Chertock; Y. Huang A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., Volume 17 (2015) no. 1, pp. 233-258 | DOI | Zbl

[8] W. Chen; C. Wang; X. Wang; S. M. Wise Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential, J. Comput. Phys.: X, Volume 3 (2019), 100031 | DOI | Zbl

[9] Q. Du; L. Ju; X. Li; Z. Qiao Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation, J. Comput. Phys., Volume 363 (2018), pp. 39-54 | DOI | Zbl

[10] C. M. Elliott; H. Garcke On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal., Volume 27 (1996) no. 2, pp. 404-423 | DOI | Zbl

[11] D. J. Eyre Unconditionally gradient stable time marching the Cahn–Hilliard equation, MRS online proceedings library (OPL), Volume 529 (1998), p. 39 | DOI

[12] S. Forest; A. Miranville A Cahn–Hilliard Model Based on Microconcentrations, Mediterr. J. Math., Volume 20 (2023) no. 4, 223 | DOI | Zbl

[13] G. Giacomin; J. L. Lebowitz Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Stat. Phys., Volume 87 (1997), pp. 37-61 | DOI | Zbl

[14] G. Giacomin; J. L. Lebowitz Phase segregation dynamics in particle systems with long range interactions II: Interface motion, SIAM J. Appl. Math., Volume 58 (1998) no. 6, pp. 1707-1729 | DOI | Zbl

[15] Z. Guan; J. S. Lowengrub; C. Wang; S. M. Wise Second order convex splitting schemes for periodic nonlocal Cahn–Hilliard and Allen–Cahn equations, J. Comput. Phys., Volume 277 (2014), pp. 48-71 | DOI | Zbl

[16] Z. Guan Numerical Analysis of First and Second Order Unconditional Energy Stable Schemes for Nonlocal Cahn–Hilliard and Allen–Cahn Equations, Ph. D. Thesis, University of Tennessee, UT Knoxville, USA (2012)

[17] Z. Guan; C. Wang; S. M. Wise A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation, Numer. Math., Volume 128 (2014), pp. 377-406 | DOI | Zbl

[18] Q.-A. Huang; W. Jiang; J. Z. Yang; C. Yuan A structure-preserving, upwind-SAV scheme for the degenerate Cahn–Hilliard equation with applications to simulating surface diffusion, J. Sci. Comput., Volume 97 (2023) no. 3, 64 | DOI

[19] H. Hoppe; N. S. Sariciftci Organic solar cells: An overview, J. Mater. Res. Technol., Volume 19 (2004) no. 7, pp. 1924-1945 | DOI

[20] R. V. Kohn; F. Otto Upper bounds on coarsening rates, Commun. Math. Phys., Volume 229 (2002) no. 3, pp. 375-395 | DOI | Zbl

[21] R. Lyons; E. N. M. Cirillo; A. Muntean Phase separation and morphology formation in interacting ternary mixtures under evaporation: Well-posedness and numerical simulation of a non-local evolution system, Nonlinear Anal., Real World Appl., Volume 77 (2024), 104039 | DOI | Zbl

[22] R. Lyons; S. A. Muntean; E. N. M. Cirillo; A. Muntean A continuum model for morphology formation from interacting ternary mixtures: Simulation study of the formation and growth of patterns, Phys. D: Nonlinear Phenom., Volume 453 (2023), 133832 | DOI | Zbl

[23] X. Li; Z. Qiao; C. Wang Double stabilizations and convergence analysis of a second-order linear numerical scheme for the nonlocal Cahn–Hilliard equation, Sci. China, Math., Volume 67 (2024) no. 1, pp. 187-210 | DOI | Zbl

[24] A. Miranville The Cahn–Hilliard equation: recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 95, Society for Industrial and Applied Mathematics, 2019 | DOI | Zbl

[25] R. Marra; M. Mourragui Phase segregation dynamics for the Blume-– Capel model with Kac interaction, Stochastic Processes Appl., Volume 88 (2000) no. 1, pp. 79-124 | DOI | Zbl

[26] A. K. Tiwari; A. Pandey; J. Paul; A. Anand Fast accurate approximation of convolutions with weakly singular kernel and its applications (2021) (arXiv.2107.03958) | DOI

[27] S. M. Wise; C. Wang; J. S. Lowengrub An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 2269-2288 | DOI | Zbl

Cité par Sources :

Commentaires - Politique