[Un schéma stable préservant l’énergie pour une équation de Cahn–Hilliard non locale]
Nous présentons un schéma numérique basé sur les volumes finis pour une équation de Cahn–Hilliard non locale qui combine des idées de schémas numériques récents pour les équations de flot de gradient et les équations de Cahn–Hilliard non locales. L’équation en question est un cas particulier d’un système d’équations précédemment dérivé et étudié qui décrit la séparation des phases dans les mélanges ternaires. Nous prouvons que le schéma est à la fois stable sur le plan énergétique et qu’il respecte les limites analytiques de la solution. En outre, nous présentons des démonstrations numériques des résultats théoriques en utilisant les potentiels d’énergie libre de Flory–Huggins (FH) et de Ginzburg–Landau (GL).
We present a finite-volume based numerical scheme for a nonlocal Cahn–Hilliard equation which combines ideas from recent numerical schemes for gradient flow equations and nonlocal Cahn–Hilliard equations. The equation of interest is a special case of a previously derived and studied system of equations which describes phase separation in ternary mixtures. We prove the scheme is both energy stable and respects the analytical bounds of the solution. Furthermore, we present numerical demonstrations of the theoretical results using both the Flory–Huggins (FH) and Ginzburg–Landau (GL) free-energy potentials.
Accepté le :
Accepté après révision le :
Publié le :
Keywords: Nonlocal Cahn–Hilliard equation, gradient flow, finite-volume method, bound preserving energy stable schemes
Mot clés : Équation de Cahn–Hilliard non locale, flot de gradient, méthode des volumes finis, schémas stables de préservation de l’énergie
Rainey Lyons 1 ; Adrian Muntean 1 ; Grigor Nika 1
@article{CRMECA_2024__352_G1_239_0, author = {Rainey Lyons and Adrian Muntean and Grigor Nika}, title = {A {Bound} {Preserving} {Energy} {Stable} {Scheme} for a {Nonlocal} {Cahn{\textendash}Hilliard} {Equation}}, journal = {Comptes Rendus. M\'ecanique}, pages = {239--250}, publisher = {Acad\'emie des sciences, Paris}, volume = {352}, year = {2024}, doi = {10.5802/crmeca.265}, language = {en}, }
TY - JOUR AU - Rainey Lyons AU - Adrian Muntean AU - Grigor Nika TI - A Bound Preserving Energy Stable Scheme for a Nonlocal Cahn–Hilliard Equation JO - Comptes Rendus. Mécanique PY - 2024 SP - 239 EP - 250 VL - 352 PB - Académie des sciences, Paris DO - 10.5802/crmeca.265 LA - en ID - CRMECA_2024__352_G1_239_0 ER -
Rainey Lyons; Adrian Muntean; Grigor Nika. A Bound Preserving Energy Stable Scheme for a Nonlocal Cahn–Hilliard Equation. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 239-250. doi : 10.5802/crmeca.265. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.265/
[1] Numerical and computational efficiency of solvers for two-phase problems, Comput. Math. Appl., Volume 65 (2013) no. 3, pp. 301-314 | DOI | Zbl
[2] Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient-flow structure, Commun. Math. Sci., Volume 18 (2020) no. 5, pp. 1259-1303 | DOI | Zbl
[3] Unconditional bound-preserving and energy-dissipating finite-volume schemes for the Cahn–Hilliard equation, Commun. Comput. Phys., Volume 34 (2023) no. 3, pp. 713-748 | DOI | Zbl
[4] Efficient numerical solution of discrete multi-component Cahn–Hilliard systems, Comput. Math. Appl., Volume 67 (2014) no. 1, pp. 106-121 | DOI | Zbl
[5] Fracture and adhesion of soft materials: a review, Rep. Prog. Phys., Volume 79 (2016) no. 4, 046601 | DOI
[6] The derivation of swarming models: mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation (A. Muntean; F. Toschi, eds.) (CISM International Centre for Mechanical Sciences), Volume 553, Springer: Vienna, 2014, pp. 1-46 | DOI
[7] A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., Volume 17 (2015) no. 1, pp. 233-258 | DOI | Zbl
[8] Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential, J. Comput. Phys.: X, Volume 3 (2019), 100031 | DOI | Zbl
[9] Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation, J. Comput. Phys., Volume 363 (2018), pp. 39-54 | DOI | Zbl
[10] On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal., Volume 27 (1996) no. 2, pp. 404-423 | DOI | Zbl
[11] Unconditionally gradient stable time marching the Cahn–Hilliard equation, MRS online proceedings library (OPL), Volume 529 (1998), p. 39 | DOI
[12] A Cahn–Hilliard Model Based on Microconcentrations, Mediterr. J. Math., Volume 20 (2023) no. 4, 223 | DOI | Zbl
[13] Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Stat. Phys., Volume 87 (1997), pp. 37-61 | DOI | Zbl
[14] Phase segregation dynamics in particle systems with long range interactions II: Interface motion, SIAM J. Appl. Math., Volume 58 (1998) no. 6, pp. 1707-1729 | DOI | Zbl
[15] Second order convex splitting schemes for periodic nonlocal Cahn–Hilliard and Allen–Cahn equations, J. Comput. Phys., Volume 277 (2014), pp. 48-71 | DOI | Zbl
[16] Numerical Analysis of First and Second Order Unconditional Energy Stable Schemes for Nonlocal Cahn–Hilliard and Allen–Cahn Equations, Ph. D. Thesis, University of Tennessee, UT Knoxville, USA (2012)
[17] A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation, Numer. Math., Volume 128 (2014), pp. 377-406 | DOI | Zbl
[18] A structure-preserving, upwind-SAV scheme for the degenerate Cahn–Hilliard equation with applications to simulating surface diffusion, J. Sci. Comput., Volume 97 (2023) no. 3, 64 | DOI
[19] Organic solar cells: An overview, J. Mater. Res. Technol., Volume 19 (2004) no. 7, pp. 1924-1945 | DOI
[20] Upper bounds on coarsening rates, Commun. Math. Phys., Volume 229 (2002) no. 3, pp. 375-395 | DOI | Zbl
[21] Phase separation and morphology formation in interacting ternary mixtures under evaporation: Well-posedness and numerical simulation of a non-local evolution system, Nonlinear Anal., Real World Appl., Volume 77 (2024), 104039 | DOI | Zbl
[22] A continuum model for morphology formation from interacting ternary mixtures: Simulation study of the formation and growth of patterns, Phys. D: Nonlinear Phenom., Volume 453 (2023), 133832 | DOI | Zbl
[23] Double stabilizations and convergence analysis of a second-order linear numerical scheme for the nonlocal Cahn–Hilliard equation, Sci. China, Math., Volume 67 (2024) no. 1, pp. 187-210 | DOI | Zbl
[24] The Cahn–Hilliard equation: recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 95, Society for Industrial and Applied Mathematics, 2019 | DOI | Zbl
[25] Phase segregation dynamics for the Blume-– Capel model with Kac interaction, Stochastic Processes Appl., Volume 88 (2000) no. 1, pp. 79-124 | DOI | Zbl
[26] Fast accurate approximation of convolutions with weakly singular kernel and its applications (2021) (arXiv.2107.03958) | DOI
[27] An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 2269-2288 | DOI | Zbl
Cité par Sources :
Commentaires - Politique