We introduce an adaptive element-based domain decomposition (DD) method for solving saddle point problems defined as a block two by two matrix. The algorithm does not require any knowledge of the constrained space. We assume that all sub matrices are sparse and that the diagonal blocks are spectrally equivalent to a sum of positive semi definite matrices. The latter assumption enables the design of adaptive coarse space for DD methods that extends the GenEO theory (Spillane et al., 2014) to saddle point problems. Numerical results on three dimensional elasticity problems for steel-rubber structures discretized by a finite element with continuous pressure are shown for up to one billion degrees of freedom.
Nous présentons une méthode de décomposition de domaine (DD) adaptative basée pour résoudre les problèmes de points selle définis comme une matrice bloc 2x2. L’algorithme ne nécessite aucune connaissance de l’espace contraint. Nous supposons que toutes les sous-matrices sont creuses et que les blocs diagonaux sont spectralement équivalents à une somme de matrices semi-définies positives. Cette dernière hypothèse permet de concevoir un espace grossier adaptatif pour les méthodes DD qui étend la théorie de GenEO (Spillane et al., 2014) aux problèmes de points de selle. Des résultats numériques sur des problèmes d’élasticité tridimensionnels pour des structures acier-caoutchouc discrétisées avec une pression continue sont montrés jusqu’à un milliard de degrés de liberté.
Accepted:
Online First:
Published online:
Mot clés : Méthode de décomposition de domaine, élasticité quasi incompressible, calcul haute performance, problème de point selle, espace grossier, éléments finis multi échelle, complément de Schur
Frédéric Nataf 1; Pierre-Henri Tournier 1
@article{CRMECA_2023__351_S1_667_0, author = {Fr\'ed\'eric Nataf and Pierre-Henri Tournier}, title = {A {GenEO} {Domain} {Decomposition} method for {Saddle} {Point} problems}, journal = {Comptes Rendus. M\'ecanique}, pages = {667--684}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.175}, language = {en}, }
TY - JOUR AU - Frédéric Nataf AU - Pierre-Henri Tournier TI - A GenEO Domain Decomposition method for Saddle Point problems JO - Comptes Rendus. Mécanique PY - 2023 SP - 667 EP - 684 VL - 351 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.175 LA - en ID - CRMECA_2023__351_S1_667_0 ER -
Frédéric Nataf; Pierre-Henri Tournier. A GenEO Domain Decomposition method for Saddle Point problems. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 667-684. doi : 10.5802/crmeca.175. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.175/
[1] Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces, Multiscale Model. Simul., Volume 8 (2010) no. 5, pp. 1621-1644 | DOI | MR | Zbl
[2] A coarse space construction based on local Dirichlet to Neumann maps, SIAM J. Sci. Comput., Volume 33 (2011) no. 4, pp. 1623-1642 | DOI | MR | Zbl
[3] Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 5, pp. 1175-1199 | DOI | Numdam | MR | Zbl
[4] High performance domain decomposition methods on massively parallel architectures with freefem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 287-302 | MR | Zbl
[5] Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms, Int. J. Numer. Methods Eng. (2013) no. 11, pp. 953-990 | DOI | MR | Zbl
[6] An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation, Other Titles in Applied Mathematics, 144, Society for Industrial and Applied Mathematics, 2015 | DOI | Zbl
[7] Robust domain decomposition methods for symmetric positive definite problems, Ph. D. Thesis, Université Pierre et Marie Curie - Paris VI, Paris, France (2014)
[8] Overlapping Schwarz methods in H(curl) on polyhedral domains, J. Numer. Math., Volume 10 (2002) no. 3, pp. 221-234 | MR | Zbl
[9] An optimal preconditioner for a class of saddle point problems with a penalty term, SIAM J. Sci. Comput., Volume 19 (1998) no. 2, pp. 540-552 | DOI | MR | Zbl
[10] Balancing Neumann-Neumann methods for incompressible Stokes equations, Commun. Pure Appl. Math., Volume 55 (2002) no. 3, pp. 302-335 | DOI | MR | Zbl
[11] Domain Decomposition Methods - Algorithms and Theory, Springer Series in Computational Mathematics, 34, Springer, 2005 | DOI | Zbl
[12] An Additive Schwarz Method Type Theory for Lions’s Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method, SIAM J. Sci. Comput., Volume 39 (2017) no. 4, p. A1345-A1365 | DOI | Zbl
[13] Block FETI–DP/BDDC preconditioners for mixed isogeometric discretizations of three-dimensional almost incompressible elasticity, Math. Comput., Volume 90 (2021) no. 330, pp. 1773-1797 | DOI | Zbl
[14] A FETI-DP type domain decomposition algorithm for three-dimensional incompressible Stokes equations, SIAM J. Numer. Anal., Volume 53 (2015) no. 2, pp. 720-742 | Zbl
[15] A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., Volume 21 (2000) no. 6, pp. 1969-1972 | DOI | MR | Zbl
[16] Numerical solution of saddle point problems, Acta Numer., Volume 14 (2005), pp. 1-137 | DOI | MR | Zbl
[17] Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems. I. Theory, SIAM J. Sci. Comput., Volume 26 (2005) no. 5, pp. 1598-1619 | DOI | MR | Zbl
[18] An element-based preconditioner for mixed finite element problems, SIAM J. Sci. Comput., Volume 43 (2020) no. 5, p. S884-S907 | DOI | MR | Zbl
[19] Some fast 3d finite element solvers for the generalized stokes problem, Int. J. Numer. Methods Fluids, Volume 8 (1988) no. 8, pp. 869-895 | DOI | Zbl
[20] Multigrid Method for H(div) in Three Dimensions, Electron. Trans. Numer. Anal., Volume 6 (1997), pp. 133-152 | MR | Zbl
[21] Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., Volume 36 (1998) no. 1, pp. 204-225 | DOI | MR | Zbl
[22] Multigrid in H(div) and H(curl), Numer. Math., Volume 85 (2000) no. 2, pp. 197-217 | DOI | MR | Zbl
[23] An algebraic multigrid method for finite element discretizations with edge elements, Numer. Linear Algebra Appl., Volume 9 (2002) no. 3, pp. 223-238 | DOI | MR | Zbl
[24] An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier–Stokes Equations at High Reynolds Number, SIAM J. Sci. Comput., Volume 41 (2019) no. 5, p. A3073-A3096 | DOI | MR | Zbl
[25] On the analysis of block smoothers for saddle point problems, SIAM J. Matrix Anal. Appl., Volume 39 (2018) no. 2, pp. 932-960 | DOI | MR | Zbl
[26] Numerical Solution of Problems in Incompressible Finite Elasticity by Augmented Lagrangian Methods. I. Two-dimensional and Axisymmetric Problems, SIAM J. Appl. Math., Volume 42 (1982), pp. 400-429 | DOI | MR | Zbl
[27] Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics, 9, Society for Industrial and Applied Mathematics, 1989 | DOI | Zbl
[28] Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems, Studies in Mathematics and its Applications, 15, Elsevier, 2000
[29] Numerical Solution of Problems in Incompressible Finite Elasticity by Augmented Lagrangian Methods II. Three-Dimensional Problems, SIAM J. Appl. Math., Volume 44 (1984), pp. 710-733 | DOI | MR | Zbl
[30] Some preconditioning techniques for saddle point problems, Model order reduction: theory, research aspects and applications (Mathematics in Industry), Volume 13, Springer, 2008, pp. 195-211 | MR | Zbl
[31] Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numer. Math., Volume 126 (2014) no. 4, pp. 741-770 | DOI | MR | Zbl
[32] Mesh theorems of traces, normalizations of function traces and their inversions, Sov. J. Numer. Anal. Math. Model., Volume 6 (1991), pp. 223-242 | MR | Zbl
[33] On the abstract theory of additive and multiplicative Schwarz algorithms, Numer. Math., Volume 70 (1995) no. 2, pp. 163-180 | DOI | MR | Zbl
[34] Variational formulation and algorithm for trace operator in domain decomposition calculations, Domain Decomposition Methods (T. Chan; R. Glowinski; J. Périaux; O. Widlund, eds.), Society for Industrial and Applied Mathematics, 1989, pp. 3-16 | Zbl
[35] A method of Finite Element Tearing and Interconnecting and its parallel solution algorithm, Int. J. Numer. Meth. Eng., Volume 32 (1991) no. 6, pp. 1205-1227 | DOI | MR | Zbl
[36] Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15, Springer, 1991 | DOI | Zbl
[37] METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices (1998) (http://glaros.dtc.umn.edu/gkhome/views/metis) (Technical report)
[38] New development in Freefem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 | MR | Zbl
[39] FFDDM: Freefem domain decomposition method, 2019 (https://doc.freefem.org/documentation/ffddm/index.html)
[40] A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., Volume 23 (2001) no. 1, pp. 15-41 | DOI | MR | Zbl
[41] ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, Software - Environments - Tools, 6, Society for Industrial and Applied Mathematics, 1998 | DOI | Zbl
[42] PT-SCOTCH: a tool for efficient parallel graph ordering, Parallel Comput., Volume 34 (2008) no. 6-8, pp. 318-331 | DOI | MR
[43] Efficient management of parallelism in object oriented numerical software libraries, Modern Software Tools in Scientific Computing, Birkhäuser, 1997, pp. 163-202 | DOI | Zbl
[44] HPDDM: High-Performance Unified framework for Domain Decomposition methods, MPI-C++ library, 2014 (https://github.com/hpddm/hpddm)
[45] KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners, Comput. Math. Appl., Volume 84 (2021), pp. 277-295 | DOI | MR | Zbl
[46] PETSc users manual (2014) no. ANL-95/11 (Technical report)
[47] Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., Volume 251 (2013), pp. 116-135 | DOI | MR | Zbl
[48] Adaptive multiscale finite-volume method for multiphase flow and transport in porous media, Multiscale Model. Simul., Volume 3 (2005) no. 1, pp. 50-64 | DOI | MR
[49] Novel design and analysis of generalized FE methods based on locally optimal spectral approximations (2021) (https://arxiv.org/abs/2103.09545)
Cited by Sources:
Comments - Policy