Comptes Rendus
Time-harmonic electromagnetics with exact controllability and discrete exterior calculus
[Électromagnétique harmonique temporelle avec contrôlabilité exacte et calcul extérieur discret]
Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 647-665.

Dans cet article, nous appliquons le concept de contrôlabilité exacte à la dispersion électromagnétique temporelle. Le problème est présenté en termes de formes différentielles et le calcul extérieur discret est utilisé pour la discrétisation spatiale. En conséquence, les propriétés physiques du problème sont maintenues. Bien que nous considérions des problèmes harmoniques temporels, nous nous concentrons sur les équations d’ondes transitoires traitées par l’approche de contrôlabilité exacte. Essentiellement, nous utilisons une variation contrôlée de l’approche asymptotique avec des contraintes périodiques, dans laquelle l’équation dépendant du temps est simulée dans le temps, jusqu’à ce que la solution harmonique temporelle soit atteinte.

In this paper, we apply the exact controllability concept for time-harmonic electromagnetic scattering. The problem is presented in terms of the differential forms, and the discrete exterior calculus is utilized for spatial discretization. Accordingly, the physical properties of the problem are maintained. Despite we consider time-harmonic problems, we concentrate on transient wave equations treated by the exact controllability approach. Essentially, we use a controlled variation of the asymptotic approach with periodic constraints, in which the time-dependent equation is simulated in time, until the time-harmonic solution is reached.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.234
Keywords: Maxwell equations, Electromagnetic scattering, Differential forms, Discrete exterior calculus, Exact controllability
Mot clés : Équations de Maxwell, Diffusion électromagnétique, Formes différentielles, Calcul extérieur discret, Contrôlabilité exacte
Sanna Mönkölä 1 ; Jukka Räbinä 1 ; Tuomo Rossi 1

1 Faculty of Information Technology, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S1_647_0,
     author = {Sanna M\"onk\"ol\"a and Jukka R\"abin\"a and Tuomo Rossi},
     title = {Time-harmonic electromagnetics with exact controllability and discrete exterior calculus},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {647--665},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S1},
     year = {2023},
     doi = {10.5802/crmeca.234},
     language = {en},
}
TY  - JOUR
AU  - Sanna Mönkölä
AU  - Jukka Räbinä
AU  - Tuomo Rossi
TI  - Time-harmonic electromagnetics with exact controllability and discrete exterior calculus
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 647
EP  - 665
VL  - 351
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.234
LA  - en
ID  - CRMECA_2023__351_S1_647_0
ER  - 
%0 Journal Article
%A Sanna Mönkölä
%A Jukka Räbinä
%A Tuomo Rossi
%T Time-harmonic electromagnetics with exact controllability and discrete exterior calculus
%J Comptes Rendus. Mécanique
%D 2023
%P 647-665
%V 351
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.234
%G en
%F CRMECA_2023__351_S1_647_0
Sanna Mönkölä; Jukka Räbinä; Tuomo Rossi. Time-harmonic electromagnetics with exact controllability and discrete exterior calculus. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 647-665. doi : 10.5802/crmeca.234. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.234/

[1] S. C. Chen; W. C. Chew Electromagnetic theory with discrete exterior calculus, Progr. Electromagn. Res., Volume 159 (2017), pp. 59-78 | DOI

[2] L. da Silva; C. Batista; I. González; A. Macêdo; W. de Oliveira; S. Melo A discrete exterior calculus approach to quantum transport and quantum chaos on surface, J. Comput. Theor. Nanosci., Volume 16 (2019) no. 9, pp. 3670-3682 | DOI

[3] P. D. Boom; O. Kosmas; L. Margetts; A. P. Jivkov A geometric formulation of linear elasticity based on discrete exterior calculus, Int. J. Solids Struct., Volume 236 (2022), 111345

[4] J. B. Perot; C. J. Zusi Differential forms for scientists and engineers, J. Comput. Phys., Volume 257, Part B (2014), pp. 1373-1393 | DOI | MR | Zbl

[5] Compatible Spatial Discretizations (D. N. Arnold; P. B. Bochev; R. B. Lehoucq; R. A. Nicolaides; M. Shashkov, eds.), The IMA Volumes in Mathematics and its Applications, 142, Springer, New York, USA, 2006 | DOI

[6] S. H. Christiansen; H. Z. Munthe-Kaas; B. Owren Topics in structure-preserving discretization, Acta Numer., Volume 20 (2011), pp. 1-119 | MR | Zbl

[7] H. Cartan Differential Forms, Kershaw Publishing Company, London, 1971

[8] M. Desbrun; A. N. Hirani; M. Leok; J. E. Marsden Discrete exterior calculus, 2005 (preprint) | arXiv

[9] A. Bossavit; L. Kettunen Yee-like schemes on a tetrahedral mesh, with diagonal lumping, Int. J. Numer. Model., Volume 12 (1999) no. 1–2, pp. 129-142 | Zbl

[10] M. Desbrun; E. Kanso; Y. Tong Discrete differential forms for computational modeling, Discrete Differ. Geom. Oberwolfach Semin., Volume 38 (2008), pp. 287-324 | MR | Zbl

[11] S. H. Christiansen; F. Rapetti On high order finite element spaces of differential forms, Math. Comput., Volume 85 (2016) no. 298, pp. 517-548 | MR | Zbl

[12] R. Picard; S. Trostorff; M. Waurick Well-posedness via monotonicity—an overview, Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Springer, Cham, Switzerland, 2015, pp. 397-452 | Zbl

[13] R. Picard; S. Trostorff; M. Waurick On a connection between the Maxwell system, the extended Maxwell system, the Dirac operator and gravito-electromagnetism, Math. Methods Appl. Sci., Volume 40 (2017) no. 2, pp. 415-434 | MR | Zbl

[14] J. Räbinä; S. Mönkölä; T. Rossi Efficient time integration of Maxwell’s equations by generalized finite-differences, SIAM J. Sci. Comput., Volume 37 (2015) no. 6, p. B834-B854 | Zbl

[15] J. Räbinä; L. Kettunen; S. Mönkölä; T. Rossi Generalized wave propagation problems and discrete exterior calculus, ESAIM: Math. Model. Numer. Anal., Volume 52 (2018) no. 3, pp. 1195-1218 | MR | Zbl

[16] M. O. Bristeau; R. Glowinski; J. Périaux Controllability methods for the computation of time-periodic solutions; application to scattering, J. Comput. Phys., Volume 147 (1998) no. 2, pp. 265-292 | MR | Zbl

[17] R. Glowinski Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation, J. Comput. Phys., Volume 103 (1992) no. 2, pp. 189-221 | MR | Zbl

[18] M. O. Bristeau; R. Glowinski; J. Périaux Numerical simulation of high frequency scattering waves using exact controllability methods, Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects: Proceedings of the Fourth International Conference on Hyperbolic Problems, Taormina, Italy, April 3–8, 1992, Vieweg+Teubner Verlag, Wiesbaden, Germany, 1993, pp. 86-108 | Zbl

[19] M. O. Bristeau; R. Glowinski; J. Périaux Scattering waves using exact controllability methods, 31st Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Washington, USA, 1993

[20] M. O. Bristeau; R. Glowinski; J. Périaux; T. Rossi 3D harmonic Maxwell solutions on vector and parallel computers using controllability and finite element methods (1999) no. RR-3607 (Technical report)

[21] R. Glowinski; T. Rossi A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I) Controllability problem formulation and related iterative solution, C. R. Acad. Sci. Paris, Volume 343 (2006) no. 7, pp. 493-498 | Numdam | MR

[22] S. Kähkönen; R. Glowinski; T. Rossi; R. Mäkinen Solution of time-periodic wave equation using mixed finite-elements and controllability techniques, J. Comput. Acoust., Volume 19 (2011) no. 4, pp. 335-352 | MR | Zbl

[23] T. Chaumont-Frelet; M. J. Grote; S. Lanteri; J. H. Tang A controllability method for Maxwell’s equations, SIAM J. Sci. Comput., Volume 44 (2022) no. 6, p. A3700-A3727 | MR | Zbl

[24] J. Räbinä On a numerical solution of the Maxwell equations by discrete exterior calculus, Phd thesis, University of Jyväskylä (2014) http://urn.fi/URN:ISBN:978-951-39-5951-7

[25] D. Pauly; T. Rossi Theoretical considerations on the computation of generalized time-periodic waves, Adv. Math. Sci. Appl., Volume 21 (2011) no. 1, pp. 105-131 | MR | Zbl

[26] J. Räbinä; P. Kuopanportti; M. Kivioja; M. Möttönen; T. Rossi Three-dimensional splitting dynamics of giant vortices in Bose–Einstein condensates, Phys. Rev. A, Volume 98 (2018), 023624 | DOI

[27] M. Kivioja; S. Mönkölä; T. Rossi GPU-accelerated time integration of Gross–Pitaevskii equation with discrete exterior calculus, Comput. Phys. Commun., Volume 278 (2022), 108427 | MR | Zbl

[28] M. Kivioja; R. Zamora-Zamora; A. Blinova; S. Mönkölä; T. Rossi; M. Möttönen Evolution and decay of an Alice ring in a spinor Bose–Einstein condensate, Phys. Rev. Res., Volume 5 (2023) no. 2, 023104

[29] T. Rossi; J. Räbinä; S. Mönkölä; S. Kiiskinen; J. Lohi; L. Kettunen Systematisation of systems solving physics boundary value problems, Numerical Mathematics and Advanced Applications ENUMATH 2019: European Conference, Egmond aan Zee, The Netherlands, September 30–October 4, Springer, Cham, Switzerland, 2020, pp. 35-51 | Zbl

[30] L. Kettunen; T. Rossi Systematic derivation of partial differential equations for second order boundary value problems, Int. J. Numer. Model.: Electronic Networks, Devices and Fields, Volume 36 (2023) no. 3, e3078

[31] J. Lohi; L. Kettunen Whitney forms and their extensions, J. Comput. Appl. Math., Volume 393 (2021), 113520 | MR | Zbl

[32] L. Kettunen; J. Lohi; J. Räbinä; S. Mönkölä; T. Rossi Generalized finite difference schemes with higher order Whitney forms, ESAIM: Math. Model. Numer. Anal., Volume 55 (2021) no. 4, pp. 1439-1460 | MR | Zbl

[33] J. Lohi Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus, Numer. Algorithms, Volume 91 (2022) no. 3, pp. 1261-1285 | MR | Zbl

[34] E. Heikkola; S. Mönkölä; A. Pennanen; T. Rossi Controllability method for the Helmholtz equation with higher-order discretizations, J. Comput. Phys., Volume 225 (2007) no. 2, pp. 1553-1576 | MR | Zbl

[35] S. Mönkölä; E. Heikkola; A. Pennanen; T. Rossi Time-harmonic elasticity with controllability and higher order discretization methods, J. Comput. Phys., Volume 227 (2008) no. 11, pp. 5513-5534 | MR | Zbl

[36] S. Mönkölä An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes, J. Comput. Phys., Volume 242 (2013), pp. 439-459 | MR | Zbl

[37] J. H. Tang; R. Brossier; L. Métivier Fully scalable solver for frequency-domain visco-elastic wave equations in 3D heterogeneous media: a controllability approach, J. Comput. Phys., Volume 468 (2022), 111514 | MR | Zbl

[38] A. Lew; J. E. Marsden; M. Ortiz; M. West Asynchronous variational integrators, Arch. Rational Mech. Anal., Volume 167 (2003) no. 2, pp. 85-146 | MR | Zbl

[39] A. Stern; Y. Tong; M. Desbrun; J. E. Marsden Geometric computational electrodynamics with variational integrators and discrete differential forms, Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden, Springer, New York, USA, 2015, pp. 437-475 | Zbl

[40] C. Ma; Z. Chen Stability and numerical dispersion analysis of CE-FDTD method, IEEE Trans. Antennas Propag., Volume 53 (2005) no. 1, pp. 332-338 | MR | Zbl

[41] Z. Peng; D. Appelö EM-WaveHoltz: a flexible frequency-domain method built from time-domain solvers, IEEE Trans. Antennas Propag., Volume 70 (2022) no. 7, pp. 5659-5671

[42] I. Lindell Differential Forms in Electromagnetics, IEEE Press Series on Electromagnetic Wave Theory, Wiley, New Jersey, USA, 2004

[43] K. F. Warnick; P. H. Russer Differential forms and electromagnetic field theory, Progr. Electromagnet. Res., Volume 148 (2014), pp. 83-112 | DOI

[44] C. von Westenholz Differential Forms in Mathematical Physics, Studies in Mathematics and its Applications, North Holland, Amsterdam, Netherlands, 1978 | MR

[45] A. N. Hirani; K. Kalyanaraman; E. B. VanderZee Delaunay Hodge star, Comput. Aided Des., Volume 45 (2013) no. 2, pp. 540-544 (Solid and Physical Modeling 2012) | DOI | MR

[46] S. Mönkölä; J. Räty Discrete exterior calculus for photonic crystal waveguides, Int. J. Numer. Methods Eng., Volume 124 (2023) no. 5, pp. 1035-1054 | DOI | MR

[47] B. Hanouzet; M. Sesques Absorbing boundary conditions for Maxwell’s equations, Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, Vieweg+Teubner Verlag, Wiesbaden, Germany, 1993, pp. 315-322 | Zbl

[48] J.-P. Berenger A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., Volume 114 (1994) no. 2, pp. 185-200 | DOI | MR | Zbl

[49] J. Räbinä; S. Mönkölä; T. Rossi; A. Penttilä; K. Muinonen Comparison of discrete exterior calculus and discrete-dipole approximation for electromagnetic scattering, J. Quant. Spectrosc. Rad. Transf., Volume 146 (2014), pp. 417-423 | DOI

[50] P. Mullen; P. Memari; F. de Goes; M. Desbrun HOT: Hodge-optimized triangulations, ACM Trans. Graph., Volume 30 (2011) no. 4, 103 (p. 1–12) | DOI

[51] K. Umashankar; A. Taflove A novel method to analyse electromagnetic scattering of complex object, IEEE Trans. Electromagn. Compat., Volume 24 (1982) no. 4, pp. 397-405 | DOI

[52] A. Taflove; K. Umashankar Radar cross section of general three-dimensional scatterers, IEEE Trans. Electromagn. Compat., Volume 25 (1983) no. 4, pp. 433-440 | DOI

[53] C. F. Bohren; D. R. Huffman Absorption and Scattering of Light by Small Particles, Wiley & Sons, New York, 1983, pp. 53-56

[54] C. Mätzler MATLAB Functions for Mie scattering and absorption. Version 2 (2002) no. 2002–11 (Technical report)

[55] G. Turk; M. Levoy Zippered polygon meshes from range images, Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, ACM, New York, NY, USA, 1994, pp. 311-318 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

FSI—vibrations of immersed cylinders. Simulations with the engineering open-source code TrioCFD. Test cases and experimental comparisons

Domenico Panunzio; Maria-Adela Puscas; Romain Lagrange

C. R. Méca (2022)


Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening

Lucas Lapostolle; Léo Morin; Katell Derrien; ...

C. R. Méca (2023)


A viscoelastic flow model of Maxwell-type with a symmetric-hyperbolic formulation

Sébastien Boyaval

C. R. Méca (2023)