Comptes Rendus
Evaluation of the PANS method for the prediction of the fluid flow in a cyclone separator
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 201-218.

The simulation of the cyclone separation efficiency can rapidly become very expensive in time of calculation, which is not suitable for industrial application. The prediction of the complex turbulent gas flow inside a cyclone is necessary to estimate its pressure drop, its characteristics and finally its separation efficiency. Even though classic models such as RSM and LES can effectively predict such type of flow, the quality of the results and the computation cost can be discussed. In this work, Partially Averaged Navier–Stokes (PANS) method is proposed to simulate the fluid flow inside a gas cyclone. Compared to experimental and numerical results of a literature review, this model predicts reasonably the time-averaged tangential and axial velocity fields, and more accurately the pressure drop across the cyclone in shorter CPU times. The sensitivity of the PANS approach to the unresolved to total kinetic energy ratio f k was also evaluated with two different definitions. The first one was the standard definition developed by Girimaji et al. [1] and the second one was based on a statistical equivalence between the DES and PITM. The proposed model offers a better cost to quality ratio compared to the classic RANS approach.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.186
Mots clés : Cyclone, Industrial air cleaning, CFD, PANS, Turbulence
Zaher Bitar 1 ; David Uystepruyst 1 ; François Beaubert 1 ; Damien Méresse 1 ; Céline Morin 1

1 LAMIH UMR CNRS 8201, Le Mont-Houy, 59313 Valenciennes CEDEX 9, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_G2_201_0,
     author = {Zaher Bitar and David Uystepruyst and Fran\c{c}ois Beaubert and Damien M\'eresse and C\'eline Morin},
     title = {Evaluation of the {PANS} method for the prediction of the fluid flow in a cyclone separator},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {201--218},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.186},
     language = {en},
}
TY  - JOUR
AU  - Zaher Bitar
AU  - David Uystepruyst
AU  - François Beaubert
AU  - Damien Méresse
AU  - Céline Morin
TI  - Evaluation of the PANS method for the prediction of the fluid flow in a cyclone separator
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 201
EP  - 218
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.186
LA  - en
ID  - CRMECA_2023__351_G2_201_0
ER  - 
%0 Journal Article
%A Zaher Bitar
%A David Uystepruyst
%A François Beaubert
%A Damien Méresse
%A Céline Morin
%T Evaluation of the PANS method for the prediction of the fluid flow in a cyclone separator
%J Comptes Rendus. Mécanique
%D 2023
%P 201-218
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.186
%G en
%F CRMECA_2023__351_G2_201_0
Zaher Bitar; David Uystepruyst; François Beaubert; Damien Méresse; Céline Morin. Evaluation of the PANS method for the prediction of the fluid flow in a cyclone separator. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 201-218. doi : 10.5802/crmeca.186. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.186/

[1] Sharath S. Girimaji; Khaled Abdol-Hamid Partially Averaged Navier Stokes model for turbulence: Implementation and validation, 43rd AIAA Aerospace Sciences Meeting and Exhibit (2005), p. 502 | DOI

[2] F. W. H. J. Boysan; W. H. Ayers; Swithenbank J. A fundamental mathematical modelling approach to cyclone design, Trans. Inst. Chem. Eng., Volume 60 (1982) no. 4, pp. 222-230

[3] P. Hadi Jafari; G. Hellström; Rikard Gebart Turbulence Modelling of a Single-Phase Flow Cyclone Gasifier, Engineering, Volume 9 (2017) no. 9, pp. 779-799 | DOI

[4] A. J. Hoekstra; J. J. Derksen; H. E. A. Van Den Akker An experimental and numerical study of turbulent swirling flow in gas cyclones, Chem. Eng. Sci., Volume 54 (1999) no. 13-14, pp. 2055-2065 | DOI

[5] Dmitry Bogdanov; Sergey Poniaev Numerical simulation of turbulent flow in a cyclonic separator, J. Phys., Conf. Ser., Volume 572 (2014) no. 1, 012056 | DOI

[6] B. Wang; D. L. Xu; K. W. Chu; A. B. Yu Numerical study of gas-solid flow in a cyclone separator, Appl. Math. Modelling, Volume 30 (2006) no. 11, pp. 1326-1342 | DOI

[7] T. G. Chuah; J. Gimbun; T. S. Y. Choong A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics, Powder Technol., Volume 162 (2006) no. 2, pp. 126-132 | DOI

[8] B. Zhao; Y. Su; J. Zhang Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration, Chem. Eng. Res. Des., Volume 84 (2006) no. 12, pp. 1158-1165 | DOI

[9] Haili Zhou; Zhanqi Hu; Qinglong Zhang; Qiang Wang; Xuan Lv Numerical study on gas-solid flow characteristics of ultra-light particles in a cyclone separator, Powder Technol., Volume 344 (2019), pp. 784-796 | DOI

[10] Fuat Kaya; Irfan Karagoz; Atakan Avci Effects of surface roughness on the performance of tangential inlet cyclone separators, Aerosol Sci. Technol., Volume 45 (2011) no. 8, pp. 988-995 | DOI

[11] Mengya He; Yanhong Zhang; Liang Ma; Hualin Wang; Pengbo Fu; Zhihuang Zhao Study on flow field characteristics in a reverse rotation cyclone with PIV, Chem. Eng. Process., Volume 126 (2018), pp. 100-107 | DOI

[12] E. Balestrin; R. K. Decker; D. Noriler; J. C. S. C. Bastos; H. F. Meier An alternative for the collection of small particles in cyclones: Experimental analysis and CFD modeling, Sep. Purif. Technol., Volume 184 (2017), pp. 54-65 | DOI

[13] Lakhbir S. Brar; R. P. Sharma; Khairy Elsayed The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone, Powder Technol., Volume 286 (2015), pp. 668-677 | DOI

[14] Khairy Elsayed; Chris Lacor The effect of vortex finder diameter on cyclone separator performance and flow field, ECCOMAS CFD Conf., JCF Pereira and A. Sequeira (Eds.) Lisbon (2010)

[15] Kwonwoo Jang; Gwang G. Lee; Kang Y. Huh Evaluation of the turbulence models for gas flow and particle transport in URANS and LES of a cyclone separator, Comput. Fluids, Volume 172 (2018), pp. 274-283 | DOI | MR | Zbl

[16] Khairy Elsayed; Chris Lacor The effect of cyclone vortex finder dimensions on the flow pattern and performance using LES, Comput. Fluids, Volume 71 (2013), pp. 224-239 | DOI | MR | Zbl

[17] G. Gronald; J. J. Derksen Simulating turbulent swirling flow in a gas cyclone: A comparison of various modeling approaches, Powder Technol., Volume 205 (2011) no. 1-3, pp. 160-171 | DOI

[18] Hosein Foroutan; Savas Yavuzkurt A partially-averaged Navier–Stokes model for the simulation of turbulent swirling flow with vortex breakdown, Int. J. Heat Fluid Flow, Volume 50 (2014), pp. 402-416 | DOI

[19] Sunil Lakshmipathy; Sharath S. Girimaji Extension of Boussinesq turbulence constitutive relation for bridging methods, J. Turbul. (2007) no. 8, N31 | DOI

[20] Michael Breuer A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow, Int. J. Heat Fluid Flow, Volume 21 (2000) no. 5, pp. 648-654 | DOI

[21] Brian Cantwell; Donald Coles An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder, J. Fluid Mech., Volume 136 (1983), pp. 321-374 | DOI

[22] David M. Driver; H. Ledd Seegmiller; Joe G. Marvin Time-dependent behavior of a reattaching shear layer, AIAA J., Volume 25 (1987) no. 7, pp. 914-919 | DOI

[23] Branislav Basara; Siniša Krajnović; Sharath S. Girimaji PANS vs. LES for computations of the flow around a 3D bluff body, Proc. of ERCOFTAC 7th Int. Symp.-ETMM7, Lymassol, Cyprus, Volume 2 (2008), p. 3

[24] Xingsi Han; Siniša Krajnović; Branislav Basara Study of active flow control for a simplified vehicle model using the PANS method, Int. J. Heat Fluid Flow, Volume 42 (2013), pp. 139-150 | DOI

[25] Branislav Basara; Siniša Krajnović; Zoran Pavlovic; Per Ringqvist Performance analysis of Partially-Averaged Navier-Stokes method for complex turbulent flows, 6th AIAA Theoretical Fluid Mechanics Conference (2011), 3106 | DOI

[26] Lars Davidson; Christophe Friess A new formulation of fk for the PANS model, J. Turbul., Volume 20 (2019) no. 5, pp. 322-336 | DOI

[27] Khairy Elsayed; Chris Lacor Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters, Comput. Fluids, Volume 51 (2011) no. 1, pp. 48-59 | DOI

[28] P. J. Roache Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech., Volume 29 (1997) no. 1, pp. 123-160 | DOI | MR

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Turbulence modeling and simulation advances in CFD during the past 50 years

Roland Schiestel; Bruno Chaouat

C. R. Méca (2022)


Dealing with hydrologic data scarcity: the case of the Tindouf basin

Julio Gonçalvès; Alexis Nutz; Pierre Séraphin; ...

C. R. Géos (2023)


Deciphering the weathering processes using environmental mineralogy and geochemistry: Towards an integrated model of laterite and podzol genesis in the Upper Amazon Basin

Emmanuel Fritsch; Etienne Balan; Nadia Régina Do Nascimento; ...

C. R. Géos (2011)