Comptes Rendus
Spontaneous articles
The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 171-199.

This work proposes a new method aiming at the direct identification of viscoelastic properties of materials with a Laplace formalism implemented in the Virtual Fields Method and named L-VFM. Using a single test, this formalism allows for a direct extraction of the different viscoelastic properties without any parametric description of their time dependency. The Laplace transform enables the use of theory of elasticity in the Laplace domain. The constitutive equations are expressed in the plane stress framework with the 2D plane stress stiffness coefficients. The conversion from the 2D plane stress stiffness coefficients to the bulk and shear moduli as well as Poisson’s ratio and Young’s modulus is realised in the Laplace domain. The inverse Laplace transform is then applied to these functions in order to obtain the temporal evolution of the material properties. The L-VFM changes the viscoelastic identification from a non-linear to a linear process.

Published online:
DOI: 10.5802/crmeca.181
Keywords: Identification, Virtual Fields Method, Linear viscoelasticity, Laplace transform, Inverse Laplace transform

Quentin Marcot 1, 2; Thomas Fourest 1; Bertrand Langrand 1, 2; Fabrice Pierron 3, 4

1 DMAS, ONERA, F-59014, Lille, France
2 Univ. Polytechnique Hauts-de-France, LAMIH, UMR CNRS 8201, F-59313 Valenciennes, France
3 Faculty of Engineering & Physical Sciences - University of Southampton, Highfield Road SO171BJ, Southampton - UK
4 MatchID NV, Leiekaai 25A, 9000 Ghent - Belgium
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Quentin Marcot and Thomas Fourest and Bertrand Langrand and Fabrice Pierron},
     title = {The {Laplace} {Virtual} {Fields} {Method} for the direct extraction of viscoelastic properties of materials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {171--199},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.181},
     language = {en},
AU  - Quentin Marcot
AU  - Thomas Fourest
AU  - Bertrand Langrand
AU  - Fabrice Pierron
TI  - The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 171
EP  - 199
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.181
LA  - en
ID  - CRMECA_2023__351_G1_171_0
ER  - 
%0 Journal Article
%A Quentin Marcot
%A Thomas Fourest
%A Bertrand Langrand
%A Fabrice Pierron
%T The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials
%J Comptes Rendus. Mécanique
%D 2023
%P 171-199
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.181
%G en
%F CRMECA_2023__351_G1_171_0
Quentin Marcot; Thomas Fourest; Bertrand Langrand; Fabrice Pierron. The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 171-199. doi : 10.5802/crmeca.181.

[1] ISO 899-1(en): Plastics — Determination of creep behaviour — Part 1: Tensile creep (2019) (Standard) | DOI

[2] ISO 6271-1(en): Plastics — Determination of dynamic mechanical properties — Part 1: General principles (2019) (Standard) | DOI

[3] SO527-1(en): Plastics — Determination of tensile properties — Part 1: General principles (2019) (Standard) | DOI

[4] Nicholas W. Tschoegl; Wolfgang G. Knauss; Igor Emri Poisson’s Ratio in Linear Viscoelasticity – A Critical Review, Mech. Time Depend. Mater., Volume 6 (2002) no. 1, pp. 3-51 | DOI

[5] Hubert Schreier; Jean-José Orteu; Michael A. Sutton Image Correlation for Shape, Motion and Deformation Measurements, Springer, Boston, MA, 2009 | DOI

[6] Yusuke Hoshino; Kazuki Tamai; Yuelin Zhang; Satoru Yoneyama Direct measurement and master curve construction of viscoelastic Poisson’s ratio with digital image correlation, Strain, Volume 54 (2018) no. 6, e12294 | DOI

[7] Hui Ru Cui; Guo Jin Tang; Zhi Bin Shen Study on the viscoelastic Poisson‘s Ratio of Solid Propellants Using Digital Image Correlation Method, Propellants, Explos., Pyrotech., Volume 41 (2016) no. 5, pp. 835-843 | DOI

[8] Jun Young Choi; Kaushik Yanamandra; Abhishek Shetty; Nikhil Gupta Simultaneous measurement of elastic constants from dynamic mechanical analysis with digital image correlation, Polymer, Volume 242 (2022), 124562 | DOI

[9] Stéphane Avril; Marc Bonnet; Anne-Sophie Bretelle; Michel Grédiac; François Hild; Patrick Ienny; Félix Latourte; Didier Lemosse; Stéphane Pagano; Emmanuel Pagnacco; Fabrice Pierron Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements, Exp. Mech., Volume 48 (2008) no. 4, pp. 381-402 | DOI

[10] Michel Grédiac; François Hild Full-Field Measurements and Identification in Solid Mechanics, Mechanical Engineering and Solid Mechanics Series, ISTE; John Wiley & Sons, 2013 | DOI | Zbl

[11] Fabrice Pierron; Michel Grédiac Towards Material Testing 2.0. A review of test design for identification of constitutive parameters from full-field measurements, Strain, Volume 57 (2020) no. 3, e12370 | DOI

[12] Michel Grédiac Principe des travaux virtuels et identification, C. R. Acad. Sci., Paris, Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, Volume 309 (1989) no. 1, pp. 1-5 | Zbl

[13] Fabrice Pierron; Michel Grédiac The Virtual Fields Method, Springer New York, New York, NY, 2012 | DOI

[14] R. Moulart; Fabrice Pierron; S. R. Hallett; M. R. Wisnom Full-Field Strain Measurement and Identification of Composites Moduli at High Strain Rate with the Virtual Fields Method, Exp. Mech., Volume 51 (2011) no. 4, pp. 509-536 | DOI

[15] Sung-ho Yoon; Clive R. Siviour Application of the Virtual Fields Method to a relaxation behaviour of rubbers, J. Mech. Phys. Solids, Volume 116 (2018), pp. 416-431 | DOI

[16] Yusuke Hoshino; Yuelin Zheng; Satoru Yoneyama Simultaneous Identification of Two-Independent Viscoelastic Characteristics with the Virtual Fields Method, Computational and Experimental Simulations in Engineering (Hiroshi Okada; Satya N. Atluri, eds.) (Mechanisms and Machine Science), Volume 75, Springer, Cham (2020), pp. 11-20 | DOI

[17] Nicholas W. Tschoegl The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction, Springer, Berlin Heidelberg, 1989 | DOI

[18] Jean Salençon Viscoelastic Modeling for Structural Analysis, John Wiley & Sons, 2019 | DOI

[19] S. W. Park; Richard Schapery Methods of interconversion between linear viscoelastic material functions. Part I - A numerical method based on Prony series, Int. J. Solids Struct., Volume 36 (1998) no. 11, pp. 1653-1675 | DOI | Zbl

[20] Richard A. Schapery A simple collocation method for fitting viscoelastic models to experimental data (1962) no. 51778 (Technical report) | DOI

[21] Martin Lévesque; Michael D. Gilchrist; Nicolas Bouleau; Katell Derrien; Didier Baptiste Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media, Comput. Mech., Volume 40 (2007) no. 4, pp. 771-789 | DOI | Zbl

[22] Shotaro Taguchi; Kyohei Takeo; Satoru Yoneyama Computing Stresses from Measured In-plane Strains in Viscoelastic Body under Plane Stress Condition, Adv. Exp. Mech., Volume 5 (2020), pp. 135-140 | DOI

[23] Ludwig Boltzmann Zur Theorie der elastischen Nachwirkung, Annalen der Physik und Chemie, Volume 241 (1878) no. 11, pp. 430-432 | DOI | Zbl

[24] Richard A. Schapery Stress Analysis of Viscoelastic Composite Materials, J. Compos. Mater., Volume 1 (1967) no. 3, pp. 228-267 | DOI

[25] John D. Ferry Viscoelastic Properties of Polymers, John Wiley & Sons, 1980

[26] Pierre-Simon de Laplace Théorie analytique des probabilités, Mme Ve Courcier, imprimeur-libraire pour les mathématiques et la marine, 57 quai des Augustins, 1812

[27] Gábor Horváth; Illés Horváth; Salah Al-Deen Almousa; Miklós Telek Numerical inverse Laplace transformation using concentrated matrix exponential distributions, Performance Evaluation, Volume 137 (2020), 102067 | DOI

[28] Nicholas W. Tschoegl Time Dependence in Material Properties: An Overview, Mech. Time-Depend. Mater., Volume 1 (1997) no. 1, pp. 3-31 | DOI

[29] Aleksander Marek; Frances M. Davis; Fabrice Pierron Sensitivity-based virtual fields for the non-linear Virtual Fields Method, Comput. Mech., Volume 60 (2017) no. 3, pp. 409-431 | DOI | MR | Zbl

[30] Thomas Fourest; P. Bouda; L. C. Fletcher; D. Notta-Cuvier; E. Markiewicz; F. Pierron; B. Langrand Image-Based Inertial Impact test for characterisation of strain rate dependency of Ti6Al4V titanium alloy, Exp. Mech., Volume 60 (2020) no. 2, pp. 235-248 | DOI

[31] Aleksander Marek; Frances M. Davis; Marco Rossi; Fabrice Pierron Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity, Int. J. Mater. Form., Volume 12 (2019) no. 3, pp. 457-476 | DOI

[32] Jean-David Thoby; Thomas Fourest; Bertrand Langrand; Delphine Notta-Cuvier; Eric Markiewicz Robustness of specimen design criteria for identification of anisotropic mechanical behaviour from heterogeneous mechanical fields, Computational Materials Science, Volume 207 (2022), 111260 | DOI

[33] Andrew Matejunas; Lloyd C. Fletcher; Leslie Lamberson An Image Based Inertial Impact test to extract viscoelastic constitutive parameters, 36th Technical Conference of the American Society for Composites 2021: Composites Ingenuity Taking on Challenges in Environment-Energy-Economy (Ozden Ochoa, ed.) (Proceedings of the American Society for Composites), DEStech Publications, Inc. (2021), pp. 904-913 | DOI

[34] George E. Roberts; Hyman Kaufman Table of Laplace transforms, W. B. Saunders Company, 1966 | Zbl

[35] Hirotsugu Inoue; Minoru Kamibayashi; Kikuo Kishimoto; Toshikazu Shibuya; Takashi Koizumi Numerical Laplace Transformation and Inversion using Fast Fourier Transform, J. Soc. Mech. Eng. Int. J. Ser. 1, Solid mechanics, strength of materials, Volume 35 (1992) no. 3, pp. 319-324 | DOI

[36] Joseph Abate; Ward Whitt A Unified Framework for Numerically Inverting Laplace Transforms, INFORMS J. Comput., Volume 18 (2006) no. 4, pp. 408-421 | DOI | MR | Zbl

[37] Joseph Abate; Gagan L. Choudhury; Ward Whitt An Introduction to Numerical Transform Inversion and Its Application to Probability Models, Computational Probability (Winfried K. Grassmann, ed.) (International Series in Operations Research & Management Science), Volume 24, Springer, Boston MA, 2000, pp. 257-323 | DOI | Zbl

[38] D. P. Gaver Observing Stochastic Processes, and Approximate Transform Inversion, Oper. Res., Volume 14 (1966) no. 3, pp. 444-459 | DOI | MR

[39] Pablo Gómez; Felipe A. Uribe The numerical Laplace transform: An accurate technique for analyzing electromagnetic transients on power system devices, Int. J. Electr. Power Energy Syst., Volume 31 (2009) no. 2-3, pp. 116-123 | DOI

[40] Jean-Didier Garaud; Johann Rannou; Christophe Bovet; Sylvia Feld-Payet; Vincent Chiaruttini; Basile Marchand; Laurent Lacourt; V. A. Yastrebov; Nicolay Osipov; Stéphane Quilici Z-set -suite logicielle pour la simulation des matériaux et structures, 14 e Colloque National en Calcul des Structures (2019)

[41] M. Rossi; P. Lava; F. Pierron; D. Debruyne; M. Sasso Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM, Strain, Volume 51 (2015) no. 3, pp. 206-222 | DOI

[42] Lloyd C. Fletcher; Fabrice Pierron An Image-Based Inertial Impact (IBII) Test for Tungsten Carbide Cermets, J. dynamic behavior mater., Volume 4 (2018) no. 4, pp. 481-504 | DOI

[43] Michel Grédiac; Evelyne Toussaint; Fabrice Pierron Special virtual fields for the direct determination of material parameters with the Virtual Fields Method. 1 – Principle and definition, Int. J. Solids Struct., Volume 39 (2002) no. 10, pp. 2691-2705 | DOI | Zbl

[44] Stéphane Avril; Fabrice Pierron General framework for the identification of constitutive parameters from full-field measurements in linear elasticity, Int. J. Solids Struct., Volume 44 (2007) no. 14, pp. 4978-5002 | DOI | Zbl

[45] Juliana E. Lopes Pacheco; Carlos Alberto Bavastri; Jucélio Tomás Pereira Viscoelastic Relaxation Modulus Characterization Using Prony Series, Lat. Am. J. Solids Struct., Volume 12 (2015) no. 2, pp. 420-445 | DOI

[46] Ishtiaq Rasool Khan; Ryoji Ohba New finite difference formulas for numerical differentiation, J. Comput. Appl. Math., Volume 126 (2000) no. 1, pp. 269-276 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy