This paper concerns numerical simulations of time-dependent problems in computational solid mechanics. A perturbation method, with the time as perturbation parameter, is proposed to solve two classical problems: an elastic bar excited by an end force and the dynamic buckling of a cylindrical panel. Specific quadratic recast of the equations is proposed to solve the nonlinear problems. Numerical results show that asymptotic time expansions is robust, efficient and gives more accurate solutions than the ones obtained with classical time-integration schemes (implicit or explicit), even when the considered meshes are coarse.
Revised:
Accepted:
Published online:
Bertille Claude 1; Grégory Girault 2; Bruno Leblé 3; Jean-Marc Cadou 2
![](/mecanique/static/ptf/img/CC-BY%204.0.png)
@article{CRMECA_2023__351_G2_227_0, author = {Bertille Claude and Gr\'egory Girault and Bruno Lebl\'e and Jean-Marc Cadou}, title = {On the use of an high order perturbation method for numerical time integration in structural dynamics.}, journal = {Comptes Rendus. M\'ecanique}, pages = {227--245}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, year = {2023}, doi = {10.5802/crmeca.195}, language = {en}, }
TY - JOUR AU - Bertille Claude AU - Grégory Girault AU - Bruno Leblé AU - Jean-Marc Cadou TI - On the use of an high order perturbation method for numerical time integration in structural dynamics. JO - Comptes Rendus. Mécanique PY - 2023 SP - 227 EP - 245 VL - 351 PB - Académie des sciences, Paris DO - 10.5802/crmeca.195 LA - en ID - CRMECA_2023__351_G2_227_0 ER -
%0 Journal Article %A Bertille Claude %A Grégory Girault %A Bruno Leblé %A Jean-Marc Cadou %T On the use of an high order perturbation method for numerical time integration in structural dynamics. %J Comptes Rendus. Mécanique %D 2023 %P 227-245 %V 351 %I Académie des sciences, Paris %R 10.5802/crmeca.195 %G en %F CRMECA_2023__351_G2_227_0
Bertille Claude; Grégory Girault; Bruno Leblé; Jean-Marc Cadou. On the use of an high order perturbation method for numerical time integration in structural dynamics.. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 227-245. doi : 10.5802/crmeca.195. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.195/
[1] A method of computation for structural dynamics, J. Eng. Mech. Div., Volume 85 (1959) no. 3, pp. 67-94 | DOI
[2] Analysis of transient algorithms with particular reference to stability behavior, Computational methods for transient analysis (Mechanics and Mathematical Methods. First Series: Computational Methods in Mechanics), Volume 1, North-Holland, 1983, pp. 67-155 | Zbl
[3] A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- method, J. Appl. Mech., Volume 60 (1993) no. 2, pp. 371-375 | DOI | MR | Zbl
[4] Mechanical vibrations: Theory and Application to Structural Dynamics, John Wiley & Sons, 2014
[5] Energy-conserving and decaying algorithms in non–linear structural dynamics, Int. J. Numer. Methods Eng., Volume 45 (1999) no. 5, pp. 569-599 | DOI | MR | Zbl
[6] Performance of an implicit time integration scheme in the analysis of wave propagations, Computers & Structures, Volume 123 (2013), pp. 93-105 | DOI
[7] The Bathe time integration method with controllable spectral radius: The -Bathe method, Computers & Structures, Volume 212 (2019), pp. 299-310 | DOI
[8] An analysis of implicit time integration schemes for wave propagations, Computers & Structures, Volume 230 (2020), 106188 | DOI
[9] New insights into the -Bathe time integration scheme when L-stable, Computers & Structures, Volume 245 (2021), 106433 | DOI
[10] Time-integration schemes for the finite element dynamic Signorini problem, SIAM J. Sci. Comput., Volume 33 (2011) no. 1, pp. 223-249 | DOI | MR | Zbl
[11] Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction, Comput. Methods Appl. Mech. Eng., Volume 256 (2013), pp. 224-250 | DOI | MR | Zbl
[12] Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized- scheme, Comput. Methods Appl. Mech. Eng., Volume 281 (2014), pp. 131-161 | DOI | MR | Zbl
[13] PWS: an efficient code system for solving space-independent nuclear reactor dynamics, Ann. Nucl. Energy, Volume 29 (2002) no. 18, pp. 2159-2172 | DOI
[14] Power series solution (PWS) of nuclear reactor dynamics with Newtonian temperature feedback, Ann. Nucl. Energy, Volume 30 (2003) no. 10, pp. 1111-1122 | DOI
[15] A Taylor series-based continuation method for solutions of dynamical systems, Dyn. Syst., Volume 98 (2019) no. 4, pp. 2827-2845 | DOI | Zbl
[16] Numerical time perturbation and resummation methods for nonlinear ODE, Nonlinear Dyn., Volume 103 (2021) no. 1, pp. 617-642 | DOI
[17] Méthode Asymptotique Numérique adaptative pour la dynamique transitoire non-linéaire, 10e colloque national en calcul des structures, Giens, France (2011) (hal-00592804)
[18] Resolution of the transient dynamic problem with arbitrary loading using the asymptotic method, J. Sound Vib., Volume 243 (2001) no. 3, pp. 475-501 | DOI
[19] Application of an asymptotic method to transient dynamic problems, J. Sound Vib., Volume 208 (1997) no. 1, pp. 73-99 | DOI
[20] Performance of Borel–Padé–Laplace integrator for the solution of stiff and non-stiff problems, Appl. Math. Comput., Volume 426 (2022), 127118 | DOI | Zbl
[21] A numerical continuation method based on Padé approximants, Int. J. Solids Struct., Volume 37 (2000), pp. 6981-7001 | DOI | Zbl
[22] Numerical divergent series resummation in fluid flow simulation, Eur. J. Comput. Mech., Volume 17 (2008) no. 4, pp. 431-451 | DOI | Zbl
[23] Considering inverse factorial series as time integration method, AIP Conference Proceedings, Volume 1798 (2017), 020129 | DOI
[24] Fast summation of divergent series and resurgent transseries from Meijer- approximants, Phys. Rev. D, Volume 97 (2018) no. 10, 105027 | DOI | MR
[25] An asymptotic-numerical method to compute the post-buckling behaviour of elastic plates and shells, Int. J. Numer. Methods Eng., Volume 36 (1993) no. 8, pp. 1251-1277 | DOI | Zbl
[26] A path-following technique via an asymptotic-numerical method, Computers & Structures, Volume 53 (1994) no. 5, pp. 1181-1192 | DOI | Zbl
[27] A numerical method for the computation of bifurcation points in fluid mechanics, Eur. J. Mech. B Fluids, Volume 25 (2006), pp. 234-254 | DOI | MR | Zbl
[28] Automatic detection and branch switching methods for steady bifurcation in fluid mechanics, J. Comput. Phys., Volume 230 (2011) no. 9, pp. 3614-3629 | DOI | MR | Zbl
[29] Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants, Int. J. Numer. Methods Eng., Volume 60 (2004), pp. 1987-2012 | DOI | Zbl
[30] An Asymptotic-Numerical Method to compute bifurcating branches, Int. J. Numer. Methods Eng., Volume 41 (1998), pp. 1365-1389 | DOI | Zbl
[31] A multi-scale modeling framework for instabilities of film/substrate systems, J. Mech. Phys. Solids, Volume 86 (2016), pp. 150-172 | DOI | MR
[32] High order continuation algorithm and meshless procedures to solve nonlinear Poisson problems, Eng. Anal. Bound. Elem., Volume 36 (2012) no. 11, pp. 1705-1714 | DOI | MR | Zbl
[33] A numerical method based on Taylor series for bifurcation analyses within Föppl–von Karman plate theory, Mech. Res. Commun., Volume 93 (2018), pp. 154-158 | DOI
[34] Calcul du problème de la houle non-linéaire et instationnaire par une méthode asymtotique numérique, Ph. D. Thesis, Université HASSAN II, Faculté des sciences BEN M ′ SIK Casablanca, Morocco (1995)
[35] Numerical comparison of eigenvalue algorithms for vibroacoustic problems, Mech. Res. Commun., Volume 91 (2018), pp. 39-45 | DOI
[36] Traitement des fortes non-linéarités par la méthode asymptotique numérique, C. R. Acad. Sci. Paris, Volume 324 (1997) no. 3, pp. 171-177 | DOI | Zbl
[37] A generic and efficient Taylor series–based continuation method using a quadratic recast of smooth nonlinear systems, Int. J. Numer. Methods Eng., Volume 119 (2019) no. 4, pp. 261-280 | DOI | MR
[38] Asymptotic numerical method for nonlinear constitutive laws, Revue Européenne des Éléments finis, Volume 7 (1998) no. 7, pp. 841-869 | DOI | Zbl
[39] Asymptotic numerical method for problems coupling several nonlinearities, Comput. Methods Appl. Mech. Eng., Volume 191 (2002) no. 51–52, pp. 5795-5810 | DOI | Zbl
[40] Wave motion in elastic solids, Courier Corporation, 2012
[41] Generalized energy–momentum method for non-linear adaptive shell dynamics, Comput. Methods Appl. Mech. Eng., Volume 178 (1999) no. 3-4, pp. 343-366 | DOI | MR | Zbl
[42] Stability of semidiscrete formulations for elastodynamics at small time steps, Finite Elem. Anal. Des., Volume 43 (2007) no. 6-7, pp. 533-542 | DOI | MR
[43] On the behaviour of the ANM continuation in the presence of bifurcations, Commun. Numer. Methods Eng., Volume 19 (2003) no. 6, pp. 45-471 | DOI | MR | Zbl
[44] Power series analysis as a major breakthrough to improve the efficiency of asymptotic numerical method in the vicinity of bifurcations, J. Comput. Phys., Volume 236 (2013), pp. 594-607 | DOI | MR
[45] Three dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept, Int. J. Numer. Methods Eng., Volume 37 (1994), pp. 2551-2568 | DOI | Zbl
[46] Computing finite rotations of shells by an asymptotic-numerical method, Comput. Methods Appl. Mech. Eng., Volume 175 (1999) no. 1-2, pp. 71-85 | DOI | Zbl
[47] Asymptotic Numerical method for stationary Navier–Stokes equations and with Petrov–Galerkin formulation, Int. J. Numer. Methods Eng., Volume 50 (2001), pp. 825-845 | DOI
[48] Theory and users manuals. version 5.8 (Pawtucket, RI 02860–4847, USA)
[49] Mesh dependent stability and condition number estimates for finite element approximations of parabolic problems, Math. Comput., Volume 83 (2014) no. 285, pp. 37-64 | DOI | MR | Zbl
[50] Padé approximants, Encyclopedia of Mathematics and Its Applications, 59, Cambridge University Press, 1996 | DOI
[51] Time integration algorithm based on divergent series resummation for ordinary and partial differential equations, J. Comput. Phys., Volume 236 (2013), pp. 56-73 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy