Comptes Rendus
On the use of an high order perturbation method for numerical time integration in structural dynamics.
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 227-245.

This paper concerns numerical simulations of time-dependent problems in computational solid mechanics. A perturbation method, with the time as perturbation parameter, is proposed to solve two classical problems: an elastic bar excited by an end force and the dynamic buckling of a cylindrical panel. Specific quadratic recast of the equations is proposed to solve the nonlinear problems. Numerical results show that asymptotic time expansions is robust, efficient and gives more accurate solutions than the ones obtained with classical time-integration schemes (implicit or explicit), even when the considered meshes are coarse.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.195
Keywords: Perturbation method, time integration method, nonlinear dynamics, nonlinear elastic shell, dynamics buckling

Bertille Claude 1; Grégory Girault 2; Bruno Leblé 3; Jean-Marc Cadou 2

1 Centre de recherche, Académie Militaire de Saint-Cyr Coëtquidan, F-56381 Guer, France.
2 Institut de Recherche Dupuy de Lôme,CNRS UMR 6027, IRDL, F-56100 Lorient, France.
3 Naval Group, 5, rue de l’Halbrane - TCO, F-44340 Bouguenais, France.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_G2_227_0,
     author = {Bertille Claude and Gr\'egory Girault and Bruno Lebl\'e and Jean-Marc Cadou},
     title = {On the use of an high order perturbation method for numerical time integration in structural dynamics.},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {227--245},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.195},
     language = {en},
}
TY  - JOUR
AU  - Bertille Claude
AU  - Grégory Girault
AU  - Bruno Leblé
AU  - Jean-Marc Cadou
TI  - On the use of an high order perturbation method for numerical time integration in structural dynamics.
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 227
EP  - 245
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.195
LA  - en
ID  - CRMECA_2023__351_G2_227_0
ER  - 
%0 Journal Article
%A Bertille Claude
%A Grégory Girault
%A Bruno Leblé
%A Jean-Marc Cadou
%T On the use of an high order perturbation method for numerical time integration in structural dynamics.
%J Comptes Rendus. Mécanique
%D 2023
%P 227-245
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.195
%G en
%F CRMECA_2023__351_G2_227_0
Bertille Claude; Grégory Girault; Bruno Leblé; Jean-Marc Cadou. On the use of an high order perturbation method for numerical time integration in structural dynamics.. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 227-245. doi : 10.5802/crmeca.195. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.195/

[1] Nathan M. Newmark A method of computation for structural dynamics, J. Eng. Mech. Div., Volume 85 (1959) no. 3, pp. 67-94 | DOI

[2] Thomas J. R. Hughes Analysis of transient algorithms with particular reference to stability behavior, Computational methods for transient analysis (Mechanics and Mathematical Methods. First Series: Computational Methods in Mechanics), Volume 1, North-Holland, 1983, pp. 67-155 | Zbl

[3] Jintai Chung; Gregory M. Hulbert A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. Appl. Mech., Volume 60 (1993) no. 2, pp. 371-375 | DOI | MR | Zbl

[4] Michel Géradin; Daniel J. Rixen Mechanical vibrations: Theory and Application to Structural Dynamics, John Wiley & Sons, 2014

[5] Detlef Kuhl; M. A. Crisfield Energy-conserving and decaying algorithms in non–linear structural dynamics, Int. J. Numer. Methods Eng., Volume 45 (1999) no. 5, pp. 569-599 | DOI | MR | Zbl

[6] Noh Gunwoo; Seounghyun Ham; Klaus-Jürgen Bathe Performance of an implicit time integration scheme in the analysis of wave propagations, Computers & Structures, Volume 123 (2013), pp. 93-105 | DOI

[7] Noh Gunwoo; Klaus-Jürgen Bathe The Bathe time integration method with controllable spectral radius: The ρ -Bathe method, Computers & Structures, Volume 212 (2019), pp. 299-310 | DOI

[8] Sun-Beom Kwon; Klaus-Jürgen Bathe; Noh Gunwoo An analysis of implicit time integration schemes for wave propagations, Computers & Structures, Volume 230 (2020), 106188 | DOI

[9] Mohammad Mahdi Malakiyeh; Saeed Shojaee; Saleh Hamzehei-Javaran; Klaus-Jürgen Bathe New insights into the β1/β2-Bathe time integration scheme when L-stable, Computers & Structures, Volume 245 (2021), 106433 | DOI

[10] David Doyen; Alexandre Ern; Serge Piperno Time-integration schemes for the finite element dynamic Signorini problem, SIAM J. Sci. Comput., Volume 33 (2011) no. 1, pp. 223-249 | DOI | MR | Zbl

[11] Vincent Acary Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction, Comput. Methods Appl. Mech. Eng., Volume 256 (2013), pp. 224-250 | DOI | MR | Zbl

[12] Olivier Brüls; Vincent Acary; Alberto Cardona Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme, Comput. Methods Appl. Mech. Eng., Volume 281 (2014), pp. 131-161 | DOI | MR | Zbl

[13] A. E Aboanber; Y. M. Hamada PWS: an efficient code system for solving space-independent nuclear reactor dynamics, Ann. Nucl. Energy, Volume 29 (2002) no. 18, pp. 2159-2172 | DOI

[14] A. E Aboanber; Y. M. Hamada Power series solution (PWS) of nuclear reactor dynamics with Newtonian temperature feedback, Ann. Nucl. Energy, Volume 30 (2003) no. 10, pp. 1111-1122 | DOI

[15] Louis Guillot; Bruno Cochelin; Christophe Vergez A Taylor series-based continuation method for solutions of dynamical systems, Dyn. Syst., Volume 98 (2019) no. 4, pp. 2827-2845 | DOI | Zbl

[16] C. Tayeh; G. Girault; Y. Guevel; Jean-Marc Cadou Numerical time perturbation and resummation methods for nonlinear ODE, Nonlinear Dyn., Volume 103 (2021) no. 1, pp. 617-642 | DOI

[17] Sébastien Baguet; Bruno Cochelin Méthode Asymptotique Numérique adaptative pour la dynamique transitoire non-linéaire, 10e colloque national en calcul des structures, Giens, France (2011) (hal-00592804)

[18] N. Berrahma-Chekroun; M. Fafard; J. J. Gervais Resolution of the transient dynamic problem with arbitrary loading using the asymptotic method, J. Sound Vib., Volume 243 (2001) no. 3, pp. 475-501 | DOI

[19] M. Fafard; K. Henchi; G. Gendron; S. Ammar Application of an asymptotic method to transient dynamic problems, J. Sound Vib., Volume 208 (1997) no. 1, pp. 73-99 | DOI

[20] Ahmad Deeb; Aziz Hamdouni; Dina Razafindralandy Performance of Borel–Padé–Laplace integrator for the solution of stiff and non-stiff problems, Appl. Math. Comput., Volume 426 (2022), 127118 | DOI | Zbl

[21] Ahmad Elhage-Hussein; Michel Potier-Ferry; Noureddine Damil A numerical continuation method based on Padé approximants, Int. J. Solids Struct., Volume 37 (2000), pp. 6981-7001 | DOI | Zbl

[22] Dina Razafindralandy; Aziz Hamdouni; Cyrille Allery Numerical divergent series resummation in fluid flow simulation, Eur. J. Comput. Mech., Volume 17 (2008) no. 4, pp. 431-451 | DOI | Zbl

[23] Dina Razafindralandy; Aziz Hamdouni; Ahmad Deeb Considering inverse factorial series as time integration method, AIP Conference Proceedings, Volume 1798 (2017), 020129 | DOI

[24] Héctor Mera; Thomas G. Pedersen; Branislav K. Nikolić Fast summation of divergent series and resurgent transseries from Meijer-G approximants, Phys. Rev. D, Volume 97 (2018) no. 10, 105027 | DOI | MR

[25] L. Azrar; Bruno Cochelin; Noureddine Damil; Michel Potier-Ferry An asymptotic-numerical method to compute the post-buckling behaviour of elastic plates and shells, Int. J. Numer. Methods Eng., Volume 36 (1993) no. 8, pp. 1251-1277 | DOI | Zbl

[26] Bruno Cochelin A path-following technique via an asymptotic-numerical method, Computers & Structures, Volume 53 (1994) no. 5, pp. 1181-1192 | DOI | Zbl

[27] Jean-Marc Cadou; Michel Potier-Ferry; Bruno Cochelin A numerical method for the computation of bifurcation points in fluid mechanics, Eur. J. Mech. B Fluids, Volume 25 (2006), pp. 234-254 | DOI | MR | Zbl

[28] Y. Guevel; H. Boutyour; Jean-Marc Cadou Automatic detection and branch switching methods for steady bifurcation in fluid mechanics, J. Comput. Phys., Volume 230 (2011) no. 9, pp. 3614-3629 | DOI | MR | Zbl

[29] H. Boutyour; Hamid Zahrouni; Michel Potier-Ferry; M. Boudi Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants, Int. J. Numer. Methods Eng., Volume 60 (2004), pp. 1987-2012 | DOI | Zbl

[30] P. Vannucci; Bruno Cochelin; Noureddine Damil; Michel Potier-Ferry An Asymptotic-Numerical Method to compute bifurcating branches, Int. J. Numer. Methods Eng., Volume 41 (1998), pp. 1365-1389 | DOI | Zbl

[31] Fan Xu; Michel Potier-Ferry A multi-scale modeling framework for instabilities of film/substrate systems, J. Mech. Phys. Solids, Volume 86 (2016), pp. 150-172 | DOI | MR

[32] A. Tri; Hamid Zahrouni; Michel Potier-Ferry High order continuation algorithm and meshless procedures to solve nonlinear Poisson problems, Eng. Anal. Bound. Elem., Volume 36 (2012) no. 11, pp. 1705-1714 | DOI | MR | Zbl

[33] H. Tian; Michel Potier-Ferry; F. Abed-Meraim A numerical method based on Taylor series for bifurcation analyses within Föppl–von Karman plate theory, Mech. Res. Commun., Volume 93 (2018), pp. 154-158 | DOI

[34] S. Mordane Calcul du problème de la houle non-linéaire et instationnaire par une méthode asymtotique numérique, Ph. D. Thesis, Université HASSAN II, Faculté des sciences BEN M ′ SIK Casablanca, Morocco (1995)

[35] B. Claude; L. Duigou; G. Girault; Y. Guevel; Jean-Marc Cadou Numerical comparison of eigenvalue algorithms for vibroacoustic problems, Mech. Res. Commun., Volume 91 (2018), pp. 39-45 | DOI

[36] Michel Potier-Ferry; Noureddine Damil; Bouazza Braikat; Juliette Descamps; Jean-Marc Cadou; Hua Lei Cao; Ahmad Elhage-Hussein Traitement des fortes non-linéarités par la méthode asymptotique numérique, C. R. Acad. Sci. Paris, Volume 324 (1997) no. 3, pp. 171-177 | DOI | Zbl

[37] Louis Guillot; Bruno Cochelin; Christophe Vergez A generic and efficient Taylor series–based continuation method using a quadratic recast of smooth nonlinear systems, Int. J. Numer. Methods Eng., Volume 119 (2019) no. 4, pp. 261-280 | DOI | MR

[38] Hamid Zahrouni; Michel Potier-Ferry; Hassan Elasmar; Noureddine Damil Asymptotic numerical method for nonlinear constitutive laws, Revue Européenne des Éléments finis, Volume 7 (1998) no. 7, pp. 841-869 | DOI | Zbl

[39] H. Abichou; Hamid Zahrouni; Michel Potier-Ferry Asymptotic numerical method for problems coupling several nonlinearities, Comput. Methods Appl. Mech. Eng., Volume 191 (2002) no. 51–52, pp. 5795-5810 | DOI | Zbl

[40] Karl F. Graff Wave motion in elastic solids, Courier Corporation, 2012

[41] Detlef Kuhl; Ekkehard Ramm Generalized energy–momentum method for non-linear adaptive shell dynamics, Comput. Methods Appl. Mech. Eng., Volume 178 (1999) no. 3-4, pp. 343-366 | DOI | MR | Zbl

[42] Eran Grosu; Isaac Harari Stability of semidiscrete formulations for elastodynamics at small time steps, Finite Elem. Anal. Des., Volume 43 (2007) no. 6-7, pp. 533-542 | DOI | MR

[43] Sébastien Baguet; Bruno Cochelin On the behaviour of the ANM continuation in the presence of bifurcations, Commun. Numer. Methods Eng., Volume 19 (2003) no. 6, pp. 45-471 | DOI | MR | Zbl

[44] Bruno Cochelin; Marc Medale Power series analysis as a major breakthrough to improve the efficiency of asymptotic numerical method in the vicinity of bifurcations, J. Comput. Phys., Volume 236 (2013), pp. 594-607 | DOI | MR

[45] Norbert Büchter; Ekkehard Ramm; Deane Roehl Three dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept, Int. J. Numer. Methods Eng., Volume 37 (1994), pp. 2551-2568 | DOI | Zbl

[46] Hamid Zahrouni; Bruno Cochelin; Michel Potier-Ferry Computing finite rotations of shells by an asymptotic-numerical method, Comput. Methods Appl. Mech. Eng., Volume 175 (1999) no. 1-2, pp. 71-85 | DOI | Zbl

[47] Jean-Marc Cadou; Bruno Cochelin; Noureddine Damil; Michel Potier-Ferry Asymptotic Numerical method for stationary Navier–Stokes equations and with Petrov–Galerkin formulation, Int. J. Numer. Methods Eng., Volume 50 (2001), pp. 825-845 | DOI

[48] Karlsson Hibbitt; Sorenson; ABAQUS Theory and users manuals. version 5.8 (Pawtucket, RI 02860–4847, USA)

[49] Liong Zhu; Qiang Du Mesh dependent stability and condition number estimates for finite element approximations of parabolic problems, Math. Comput., Volume 83 (2014) no. 285, pp. 37-64 | DOI | MR | Zbl

[50] Georges A. Baker; Peter Graves-Morris Padé approximants, Encyclopedia of Mathematics and Its Applications, 59, Cambridge University Press, 1996 | DOI

[51] Dina Razafindralandy; Aziz Hamdouni Time integration algorithm based on divergent series resummation for ordinary and partial differential equations, J. Comput. Phys., Volume 236 (2013), pp. 56-73 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy