This study proposes a theoretical contribution to the problem of the various distortions affecting axisymmetric capillary bridges, due to gravity or to bending effects linked to the Gaussian curvature. We deduce a clear hierarchization of effects between various reference configurations and put in a prominent position an exact first integral for the Young–Laplace equations, classical or generalized. These relationships are taken advantage of to obtain the theoretical expression of the varying inter-particle force, quantified effects of flexural strength. Finally, we establish a generalization of the classical “gorge method” to calculate accurately the capillary force of a profile subjected to distorsion due to bending when the gravity effects are negligible or not taken into account.
Cette étude propose une contribution théorique au problème des distorsions affectant les ponts capillaires axisymétriques, dues à la gravité ou aux effets de flexion liés à la courbure gaussienne. Nous en déduisons une hiérarchisation claire de ces effets pour différentes configurations de référence et nous mettons en évidence une intégrale première exacte pour les équations de Young–Laplace, classiques ou généralisées. Ces relations sont mises à profit pour obtenir une expression théorique de la force capillaire, tenant compte des effets de flexion, qui n’est plus constante. Enfin, nous établissons une généralisation de la “gorge method” classique pour calculer avec précision la force capillaire d’un doublet capillaire soumis à une distorsion due aux effets de flexion lorsque les effets de la gravité sont négligeables ou non pris en compte.
Revised:
Accepted:
Online First:
Published online:
Keywords: Distortion of capillary bridges, Mean and Gaussian curvatures impact, Generalized Young–Laplace equation, Bending effects
Mots-clés : Distorsion des ponts capillaires, Courbure moyenne et courbure gaussienne, Équation de Young–Laplace généralisée, Effets de flexion
Olivier Millet 1; Gérard Gagneux 1
@article{CRMECA_2023__351_S2_115_0, author = {Olivier Millet and G\'erard Gagneux}, title = {Bending effects distorting axisymmetric capillary bridges. {Generalized} {Young{\textendash}Laplace} equation and associated capillary forces}, journal = {Comptes Rendus. M\'ecanique}, pages = {115--123}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S2}, year = {2023}, doi = {10.5802/crmeca.196}, language = {en}, }
TY - JOUR AU - Olivier Millet AU - Gérard Gagneux TI - Bending effects distorting axisymmetric capillary bridges. Generalized Young–Laplace equation and associated capillary forces JO - Comptes Rendus. Mécanique PY - 2023 SP - 115 EP - 123 VL - 351 IS - S2 PB - Académie des sciences, Paris DO - 10.5802/crmeca.196 LA - en ID - CRMECA_2023__351_S2_115_0 ER -
%0 Journal Article %A Olivier Millet %A Gérard Gagneux %T Bending effects distorting axisymmetric capillary bridges. Generalized Young–Laplace equation and associated capillary forces %J Comptes Rendus. Mécanique %D 2023 %P 115-123 %V 351 %N S2 %I Académie des sciences, Paris %R 10.5802/crmeca.196 %G en %F CRMECA_2023__351_S2_115_0
Olivier Millet; Gérard Gagneux. Bending effects distorting axisymmetric capillary bridges. Generalized Young–Laplace equation and associated capillary forces. Comptes Rendus. Mécanique, Physical Science in Microgravity within the Thematic Group Fundamental and Applied Microgravity, Volume 351 (2023) no. S2, pp. 115-123. doi : 10.5802/crmeca.196. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.196/
[1] Wetting: statics and dynamics, Rev. Mod. Phys., Volume 57 (1985) no. 3, pp. 827-863 | DOI | MR
[2] Study of capillary interaction between two grains: A new experimental device with suction control, Granul. Matter, Volume 15 (2013) no. 1, pp. 49-56 | DOI
[3] Dynamic contact angles and contact angle hysteresis, J. Colloid Interface Sci., Volume 62 (1977) no. 2, pp. 205-212 | DOI
[4] A theoretical study of the liquid bridge forces between two rigid spherical bodies, J. Colloid Interface Sci., Volume 161 (1993) no. 1, pp. 138-147 | DOI
[5] Pendular rings between solids: meniscus properties and capillary force, J. Fluid Mech., Volume 67 (1975) no. 104, pp. 723-742 | DOI | Zbl
[6] Chapter 28 Pendular capillary bridges, Granulation (Handbook of Powder Technology), Volume 11, Elsevier, 2007, pp. 1317-1351 | DOI
[7] An Introduction to Differential Geometry. Differential geometry: theory and applications, Series in contemporary applied mathematics, 9, World Scientific (2008), pp. 1-93
[8] An introduction to interfaces colloids: the bridge to nanoscience, World Scientific, 2010
[9] Fluid flow through rock joints: the effect of surface roughness, J. Geophys. Res. Solid Earth, Volume 92 (1987), pp. 1337-1347 | DOI
[10] Capillary surface interfaces, Notices Am. Math. Soc., Volume 46 (1999) no. 7, pp. 770-781 | MR | Zbl
[11] Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, 1984 | DOI
[12] Particle-surface capillary forces, Langmuir, Volume 15 (1999) no. 13, pp. 4551-4559 | DOI
[13] Capillary models for liquid crystal fibers, membranes, films, and drops, Soft Matter, Volume 3 (2007) no. 11, pp. 1349-1368 | DOI | Zbl
[14] Surface roughness and contact angle, J. Phys. Chem., Volume 53 (1949) no. 9, pp. 1466-1467 | DOI
[15] Configurations of fluid membranes and vesicles, Adv. Phys., Volume 46 (1997) no. 1, pp. 13-137 | DOI
[16] interpolation and blending on surfaces, Vis. Comput., Volume 12 (1996) no. 4, pp. 181-192 | DOI | Zbl
[17] Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pures Appl., Volume 6 (1841), pp. 309-315 | Numdam
[18] Analytic Calculation of Capillary Bridge Properties Deduced as an Inverse Problem from Experimental Data, Transp. Porous Med., Volume 105 (2014) no. 1, pp. 117-139 | DOI | MR
[19] et al. Theoretical and experimental study of pendular regime in unsaturated granular media, Eur. J. Environ. Civ. Eng., Volume 21 (2016) no. 7-8, pp. 840-853 | DOI
[20] Exact calculation of axisymmetric capillary bridge properties between two unequal-sized spherical particles, Math Mech Solids, Volume 24 (2019) no. 9, pp. 2767-2784 | DOI | MR | Zbl
[21] Liquid bridges between a sphere and a plane-classification of meniscus profiles for unknown capillary pressure, Math Mech Solids, Volume 24 (2019) no. 10, pp. 3042-3060 | DOI | MR | Zbl
[22] On the capillary bridge between spherical particles of unequal size: analytical and experimental approaches, Contin. Mech. Thermodyn., Volume 31 (2019) no. 1, pp. 225-237 | DOI | MR
[23] Theoretical and experimental study of capillary bridges between two parallel planes, Eur. J. Environ. Civ. Eng. (2020), pp. 1-11
[24] The Young–Laplace equation links capillarity with geometrical optics, Eur. J. Phys., Volume 24 (2003) no. 2, 159 | DOI | MR
[25] Generalization of the classical theory of capillarity, J. Chem. Phys., Volume 66 (1977) no. 12, pp. 5464-5476 | DOI
[26] et al. The Generalized Theory of Capillarity, Applied Surface Thermodynamics (A. W. Neumann; J. K. Spelt, eds.) (Surfactant science series), Volume 63, Marcel Dekker, 1996, pp. 1-52
[27] Capillarity at the nanoscale, Chem. Soc. Rev., Volume 39 (2010) no. 3, pp. 1096-1114 | DOI
[28] Capillarity and gravity, Capillarity and Wetting Phenomena, Springer, 2004, pp. 33-67 | DOI
[29] et al. Characterisation of pendular capillary bridges derived from experimental data using inverse problem method, Granul. Matter, Volume 20 (2018) no. 1, 14 | DOI
[30] et al. Low-gravity fluid mechanics, Springer, 2012
[31] An analytical framework for evaluating the cohesion effects of coalescence between capillary bridges, Granul. Matter, Volume 18 (2016) no. 2, 16 | DOI
[32] et al. An original method for measuring liquid surface tension from capillary bridges between two equal-sized spherical particles, Powder Technol., Volume 363 (2020), pp. 349-359 | DOI
[33] et al. Effects of surface roughness on liquid bridge capillarity and droplet wetting, Powder Technol., Volume 378 (2021), pp. 487-496 | DOI
Cited by Sources:
Comments - Policy