Le transfert de masse à partir de particules présente de nombreuses applications biomédicales. En conditions opérationnelles, les particules sont soumises à des écoulements de fluides de différentes natures, dont l’effet sur le transport du soluté est aujourd’hui encore mal connu. Dans cet article nous considérons le transfert de masse à partir de capsules sphériques et de fibres noyau-coque soumises à différentes conditions d’écoulement. Les effets combinés de l’écoulement et de la perméabilité de la coque des particules sur l’efficacité du transfert sont analysés et quantifiés par des corrélations pour le nombre de Sherwood (le coefficient de transfert de masse adimensionnel). La perméabilité des particules influence fortement l’efficacité du transfert, mais elle est difficilement mesurable. Une nouvelle méthode de caractérisation de la perméabilité de la coque des capsules est proposée et validée sur des données expérimentales. Tous les résultats obtenus peuvent être appliqués au transfert de chaleur vers ou depuis des particules soumises à des écoulements.
Mass transfer from particles is encountered in many biomedical applications. In operating conditions, particles are subjected to flows whose effect on solute transport is still not well understood. In this article we consider mass transfer from core-shell capsules and fibers subjected to various flow conditions. The combined effects of the flow and the shell permeability on the mass transfer efficiency are analyzed and quantified by correlations for the Sherwood number (the dimensionless mass transfer coefficient). The permeability is found to significantly affect the mass transfer efficiency, but it is a hardly measurable quantity. A new characterization method is proposed and validated using experimental data. All the obtained results can be applied to heat transfer from or to particles subjected to flow.
Révisé le :
Accepté le :
Publié le :
Keywords: mass transfer, heat transfer, flow, forced convection, capsules, fibers, Mmembranes, permeability
Clément Bielinski 1 ; Badr Kaoui 1
@article{CRMECA_2023__351_G2_551_0, author = {Cl\'ement Bielinski and Badr Kaoui}, title = {Transfert de masse non-stationnaire depuis des particules sous \'ecoulement}, journal = {Comptes Rendus. M\'ecanique}, pages = {551--562}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, year = {2023}, doi = {10.5802/crmeca.204}, language = {fr}, }
Clément Bielinski; Badr Kaoui. Transfert de masse non-stationnaire depuis des particules sous écoulement. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 551-562. doi : 10.5802/crmeca.204. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.204/
[1] Mathematical modeling of drug delivery, Int. J. Pharm., Volume 364 (2008) no. 2, pp. 328-343 | DOI
[2] Mathematical modeling and simulation of drug release from microspheres : Implications to drug delivery systems, Adv. Drug Deliv. Rev., Volume 58 (2006) no. 12-13, pp. 1274-1325 | DOI
[3] Bubbles, Drops, and Particles, Academic Press Inc., 1978
[4] Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles, Langmuir, Volume 17 (2001), pp. 5375-5380 | DOI
[5] Onion-like multilayered polymer capsules synthesized by a bioinspired inside-out technique, Nat. Commun., Volume 8 (2017) no. 1, 193 | DOI
[6] Mechanistic modelling of drug release from multi-layer capsules, Comput. Biol. Med., Volume 93 (2018), pp. 149-157 | DOI
[7] Numerical method to characterise capsule membrane permeability for controlled drug delivery, Int. J. Numer. Methods Biomed. Eng., Volume 38 (2022), e3551 | DOI
[8] Characterization of small molecules diffusion in hydrogel-membrane liquid-core capsules, Biochem. Eng. J., Volume 6 (2000), pp. 41-44 | DOI
[9] Mass transfer behavior of solutes in NaCS-PDMDAAC capsules, Ind. Eng. Chem. Res., Volume 45 (2006) no. 5, pp. 1811-1816 | DOI
[10] Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability, Nature Chemistry, Volume 3 (2011), pp. 382-387 | DOI
[11] Sealing liquid-filled pectinate capsules with a shellac coating, J. Microencapsul., Volume 2 (2012), pp. 147-155 | DOI
[12] Alginate/poly-L-lysine capsules : mechanical properties and drug release characteristics, Soft Matter, Volume 7 (2011), pp. 6684-6694 | DOI
[13] Encapsulation and controlled release from core-shell nanoparticles fabricated by plasma polymerization, J. Nanopart. Res., Volume 14 (2012), 668 | DOI
[14] Physicochemical properties of aqueous core hydrogel capsules, Soft Matter, Volume 10 (2014), pp. 9668-9674 | DOI
[15] Physico-chemical properties of alginate/shellac aqueous-core capsules : Influence of membrane architecture on riboflavin release, Carbohydr. Polym., Volume 144 (2016), pp. 428-437 | DOI
[16] The Mathematics of Diffusion, Oxford University Press, 1962 | Zbl
[17] Mass transfer from a sheared spherical rigid capsule, Phys. Fluids, Volume 34 (2022), 031902 | DOI
[18] Wärmeabgabe von geheizten Drähten und Rohren im Luftstrom, Forschung auf dem Gebiet des Ingenieurwesens, Volume 4 (1933), pp. 215-224 | DOI
[19] A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow, J. Heat Transfer, Volume 99 (1977), pp. 300-306 | DOI
[20] Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE J., Volume 18 (1972) no. 2, pp. 361-371 | DOI
[21] Particles, bubbles and drops, their motion, heat and mass transfer, World Scientific, 2006
[22] Flow and mass transfer around a core-shell reservoir, Phys. Rev. E, Volume 95 (2017), 063310 | DOI
[23] Unsteady mass transfer from a core-shell cylinder in crossflow, Phys. Rev. Fluids, Volume 6 (2021), 023501 | DOI
[24] Impact de l’écoulement sur le transfert de masse à partir de particules : Applications biomédicales, Ph. D. Thesis, Université de technologie de Compiègne (2022)
[25] Heat and mass transfer from small spheres and cylinders freely suspended in shear flow, Phys. Fluids, Volume 11 (1968) no. 9, pp. 1913-1918 | DOI
[26] Heat transfer at high Péclet number from a small sphere freely rotating in a simple shear field, J. Fluid Mech., Volume 46 (1971), pp. 233-240 | DOI
[27] Closed streamline flows past small rotating particles : Heat transfer at high Péclet numbers, Int. J. Multiphase Flow, Volume 2 (1976), pp. 365-377 | DOI
[28] Mass transfer from a particle suspended in fluid with a steady linear ambient velocity distribution, J. Fluid Mech., Volume 95 (1979), pp. 369-400 | DOI
[29] New methods of the mass and heat transfer theory- II. The methods of asymptotic interpolation and extrapolation, Heat Mass. Transf., Volume 28 (1985) no. 1, pp. 45-58 | DOI
[30] Inertial effects on the transfer of heat or mass transfer from neutrally buoyant spheres in a steady linear velocity field, Phys. Fluids, Volume 18 (2006), 073302 | DOI
[31] Interacting effects of uniform flow, plane shear, and near-wall proximity on the heat and mass transfer of respiratory aerosols, Int. J. Heat Mass Transfer, Volume 47 (2004), pp. 4745-4759 | DOI
[32] Enhancement of mass transfer from particles by local shear-rate and correlations with application to drug dissolution, AIChE J., Volume 65 (2019) no. 8, 16617 | DOI
[33] Computer simulations of drug release from a liposome into the bloodstream, Eur. Phys. J. E, Volume 41 (2018) no. 2, 20 | DOI
Cité par Sources :
Commentaires - Politique