Comptes Rendus
Transfert de masse non-stationnaire depuis des particules sous écoulement
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 551-562.

Le transfert de masse à partir de particules présente de nombreuses applications biomédicales. En conditions opérationnelles, les particules sont soumises à des écoulements de fluides de différentes natures, dont l’effet sur le transport du soluté est aujourd’hui encore mal connu. Dans cet article nous considérons le transfert de masse à partir de capsules sphériques et de fibres noyau-coque soumises à différentes conditions d’écoulement. Les effets combinés de l’écoulement et de la perméabilité de la coque des particules sur l’efficacité du transfert sont analysés et quantifiés par des corrélations pour le nombre de Sherwood (le coefficient de transfert de masse adimensionnel). La perméabilité des particules influence fortement l’efficacité du transfert, mais elle est difficilement mesurable. Une nouvelle méthode de caractérisation de la perméabilité de la coque des capsules est proposée et validée sur des données expérimentales. Tous les résultats obtenus peuvent être appliqués au transfert de chaleur vers ou depuis des particules soumises à des écoulements.

Mass transfer from particles is encountered in many biomedical applications. In operating conditions, particles are subjected to flows whose effect on solute transport is still not well understood. In this article we consider mass transfer from core-shell capsules and fibers subjected to various flow conditions. The combined effects of the flow and the shell permeability on the mass transfer efficiency are analyzed and quantified by correlations for the Sherwood number (the dimensionless mass transfer coefficient). The permeability is found to significantly affect the mass transfer efficiency, but it is a hardly measurable quantity. A new characterization method is proposed and validated using experimental data. All the obtained results can be applied to heat transfer from or to particles subjected to flow.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.204
Mot clés : transfert de masse, écoulement, convection forcée, capsules, fibres, membranes, perméabilité
Keywords: mass transfer, heat transfer, flow, forced convection, capsules, fibers, Mmembranes, permeability

Clément Bielinski 1 ; Badr Kaoui 1

1 Laboratoire Biomécanique et Bioingénierie, Université de Technologie de Compiègne et CNRS, 60200 Compiègne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_G2_551_0,
     author = {Cl\'ement Bielinski and Badr Kaoui},
     title = {Transfert de masse non-stationnaire depuis des particules sous \'ecoulement},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {551--562},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.204},
     language = {fr},
}
TY  - JOUR
AU  - Clément Bielinski
AU  - Badr Kaoui
TI  - Transfert de masse non-stationnaire depuis des particules sous écoulement
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 551
EP  - 562
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.204
LA  - fr
ID  - CRMECA_2023__351_G2_551_0
ER  - 
%0 Journal Article
%A Clément Bielinski
%A Badr Kaoui
%T Transfert de masse non-stationnaire depuis des particules sous écoulement
%J Comptes Rendus. Mécanique
%D 2023
%P 551-562
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.204
%G fr
%F CRMECA_2023__351_G2_551_0
Clément Bielinski; Badr Kaoui. Transfert de masse non-stationnaire depuis des particules sous écoulement. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 551-562. doi : 10.5802/crmeca.204. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.204/

[1] J. Siepmann; F. Siepmann Mathematical modeling of drug delivery, Int. J. Pharm., Volume 364 (2008) no. 2, pp. 328-343 | DOI

[2] Davis Y. Arifin; Lai Yeng Lee; Chi-Hwa Wang Mathematical modeling and simulation of drug release from microspheres : Implications to drug delivery systems, Adv. Drug Deliv. Rev., Volume 58 (2006) no. 12-13, pp. 1274-1325 | DOI

[3] R. Clift; J. R. Grace; M. E. Weber Bubbles, Drops, and Particles, Academic Press Inc., 1978

[4] X. Qiu; S. Leporatti; E. Donath; H. Moehwald Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles, Langmuir, Volume 17 (2001), pp. 5375-5380 | DOI

[5] Brady C. Zarket; Srinivasa R. Raghavan Onion-like multilayered polymer capsules synthesized by a bioinspired inside-out technique, Nat. Commun., Volume 8 (2017) no. 1, 193 | DOI

[6] Badr Kaoui; Marco Lauricella; Giuseppe Pontrelli Mechanistic modelling of drug release from multi-layer capsules, Comput. Biol. Med., Volume 93 (2018), pp. 149-157 | DOI

[7] Clément Bielinski; Badr Kaoui Numerical method to characterise capsule membrane permeability for controlled drug delivery, Int. J. Numer. Methods Biomed. Eng., Volume 38 (2022), e3551 | DOI

[8] R. Dembczynski; T. Jankowski Characterization of small molecules diffusion in hydrogel-membrane liquid-core capsules, Biochem. Eng. J., Volume 6 (2000), pp. 41-44 | DOI

[9] S. Yao; Y. Guan; D. Lin Mass transfer behavior of solutes in NaCS-PDMDAAC capsules, Ind. Eng. Chem. Res., Volume 45 (2006) no. 5, pp. 1811-1816 | DOI

[10] Rob Ameloot; Frederik Vermoortele; Wim Vanhove; Maarten B. J. Roeffaers; Bert F. Sels; Dirk E. De Vos Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability, Nature Chemistry, Volume 3 (2011), pp. 382-387 | DOI

[11] Stefan Henning; Sabine Leick; Maureen Kott; Heinz Rehage; Dieter Suter Sealing liquid-filled pectinate capsules with a shellac coating, J. Microencapsul., Volume 2 (2012), pp. 147-155 | DOI

[12] Sabine Leick; Alexander Kemper; Heinz Rehage Alginate/poly-L-lysine capsules : mechanical properties and drug release characteristics, Soft Matter, Volume 7 (2011), pp. 6684-6694 | DOI

[13] A. Shahravan; T. Matsoukas Encapsulation and controlled release from core-shell nanoparticles fabricated by plasma polymerization, J. Nanopart. Res., Volume 14 (2012), 668 | DOI

[14] L. Rolland; E. Santanach-Carreras; T. Delmas; J. Bibette; N. Bremond Physicochemical properties of aqueous core hydrogel capsules, Soft Matter, Volume 10 (2014), pp. 9668-9674 | DOI

[15] G. Ben Messaoud; L. Sánchez-González; L. Probst; C. Jeandel; E. Arab-Tehrany; S. Desobry Physico-chemical properties of alginate/shellac aqueous-core capsules : Influence of membrane architecture on riboflavin release, Carbohydr. Polym., Volume 144 (2016), pp. 428-437 | DOI

[16] J. Crank The Mathematics of Diffusion, Oxford University Press, 1962 | Zbl

[17] Clément Bielinski; L. Xia; G. Helbecque; Badr Kaoui Mass transfer from a sheared spherical rigid capsule, Phys. Fluids, Volume 34 (2022), 031902 | DOI

[18] R. Hilpert Wärmeabgabe von geheizten Drähten und Rohren im Luftstrom, Forschung auf dem Gebiet des Ingenieurwesens, Volume 4 (1933), pp. 215-224 | DOI

[19] S. W. Churchill; M. Bernstein A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow, J. Heat Transfer, Volume 99 (1977), pp. 300-306 | DOI

[20] S. Whitaker Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE J., Volume 18 (1972) no. 2, pp. 361-371 | DOI

[21] E. E. Michaelides Particles, bubbles and drops, their motion, heat and mass transfer, World Scientific, 2006

[22] Badr Kaoui Flow and mass transfer around a core-shell reservoir, Phys. Rev. E, Volume 95 (2017), 063310 | DOI

[23] Clément Bielinski; Nam Le; Badr Kaoui Unsteady mass transfer from a core-shell cylinder in crossflow, Phys. Rev. Fluids, Volume 6 (2021), 023501 | DOI

[24] Clément Bielinski Impact de l’écoulement sur le transfert de masse à partir de particules : Applications biomédicales, Ph. D. Thesis, Université de technologie de Compiègne (2022)

[25] N. A. Frankel; A. Acrivos Heat and mass transfer from small spheres and cylinders freely suspended in shear flow, Phys. Fluids, Volume 11 (1968) no. 9, pp. 1913-1918 | DOI

[26] A. Acrivos Heat transfer at high Péclet number from a small sphere freely rotating in a simple shear field, J. Fluid Mech., Volume 46 (1971), pp. 233-240 | DOI

[27] G. G. Poe; A. Acrivos Closed streamline flows past small rotating particles : Heat transfer at high Péclet numbers, Int. J. Multiphase Flow, Volume 2 (1976), pp. 365-377 | DOI

[28] G. K. Batchelor Mass transfer from a particle suspended in fluid with a steady linear ambient velocity distribution, J. Fluid Mech., Volume 95 (1979), pp. 369-400 | DOI

[29] A. D. Polyanin; V. V. Dil’man New methods of the mass and heat transfer theory- II. The methods of asymptotic interpolation and extrapolation, Heat Mass. Transf., Volume 28 (1985) no. 1, pp. 45-58 | DOI

[30] G. Subramanian; D. Koch Inertial effects on the transfer of heat or mass transfer from neutrally buoyant spheres in a steady linear velocity field, Phys. Fluids, Volume 18 (2006), 073302 | DOI

[31] P. W. Longest; C. Kleinstreuer Interacting effects of uniform flow, plane shear, and near-wall proximity on the heat and mass transfer of respiratory aerosols, Int. J. Heat Mass Transfer, Volume 47 (2004), pp. 4745-4759 | DOI

[32] Y. Wang; J. G. Brasseur Enhancement of mass transfer from particles by local shear-rate and correlations with application to drug dissolution, AIChE J., Volume 65 (2019) no. 8, 16617 | DOI

[33] Badr Kaoui Computer simulations of drug release from a liposome into the bloodstream, Eur. Phys. J. E, Volume 41 (2018) no. 2, 20 | DOI

Cité par Sources :

Commentaires - Politique