Comptes Rendus
Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, SedFoam and FLOW-3D
[Étude numérique tridimensionnelle d’un affouillement local en aval d’une vanne submergée à l’aide de deux modèles hydro-morphodynamiques, SedFoam et FLOW-3D]
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 525-550.

Des simulations numériques tridimensionnelles ont été menées pour étudier l’affouillement des sédiments sous un jet d’eau dans un canal confiné. L’étude présente 2 phénomènes pendant l’affouillement : un changement de forme de la dune et des cycles de creusement-remplissage. Deux modèles hydro-morphodynamiques ont été utilisés et calibrés avec des données expérimentales. Les résultats ont montré que le changement de forme de dune était dû à l’interaction fluide-particules, tandis que le phénomène de creusement-remplissage était dû au comportement des particules sous l’effet de la gravité. Cette étude donne un aperçu du processus d’affouillement et de l’importance d’utiliser des modèles numériques appropriés.

Three-dimensional numerical simulations were performed, based on an experimental study of sediments scour process subjected to a water jet downstream of a submerged sluice gate with a rectangular opening at the bottom in a very confined channel. This experimental geometry, little studied in the literature, presents two particular phenomena in the dynamics of the scour process: a change of the dune form and a digging - refilling cycles of the scour. Two different hydro-morphodynamic models, SedFoam and FLOW-3D, were used and calibrated according to the experimental data. SedFoam is a multiphase flow model based on the open-source tool-box OpenFOAM and uses a coupling method between the fluid and particles phases in the RANS equations through the dense granular rheology, while FLOW-3D is an CFD software that uses a sediment scour model to perform sediment transport through bedload and suspended load transport equations without direct coupling with the fluid phase. The use of these specific three-dimensional numerical models in the case of the water flow with a jet in a very confined channel has allowed to evaluate the accuracy of turbulence models used. The RNG K-ε turbulence model was used in FLOW-3D while the K-ω turbulence model was used in SedFoam. The RNG K-ε turbulence model is more numerically stable for a finer mesh size. Based on the comparison of the three-dimensional numerical results with the experimental data, a discussion has allowed to explain the two particular phenomena in the dynamics of the scour process, a change of the dune form and a digging - refilling cycles of the scour, observed in the experimental data. It was concluded that the dune shape-shifting is due to the hydro-morphodynamic behaviour of the interaction of fluid-particles in presence of high degree of confinement while the digging - refilling phenomenon is explained by the physical mechanics behaviour of the particles phase due to gravity.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.223
Keywords: scouring, confined water jet, CFD modeling, turbulence modeling, multi-phase flow model, sediment scour model
Mot clés : affouillement, jet d’eau confiné, modélisation CFD tridimensionnelle, modélisation de la turbulence, écoulement multiphasique, modèle d’affouillement des sédiments
Alaa Ghzayel 1 ; Anthony Beaudoin 1

1 Institut Pprime, SP2MI-Téléport 2, boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_G2_525_0,
     author = {Alaa Ghzayel and Anthony Beaudoin},
     title = {Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, {SedFoam} and {FLOW-3D}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {525--550},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.223},
     language = {en},
}
TY  - JOUR
AU  - Alaa Ghzayel
AU  - Anthony Beaudoin
TI  - Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, SedFoam and FLOW-3D
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 525
EP  - 550
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.223
LA  - en
ID  - CRMECA_2023__351_G2_525_0
ER  - 
%0 Journal Article
%A Alaa Ghzayel
%A Anthony Beaudoin
%T Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, SedFoam and FLOW-3D
%J Comptes Rendus. Mécanique
%D 2023
%P 525-550
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.223
%G en
%F CRMECA_2023__351_G2_525_0
Alaa Ghzayel; Anthony Beaudoin. Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, SedFoam and FLOW-3D. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 525-550. doi : 10.5802/crmeca.223. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.223/

[1] H. N. C. Breusers; A. J. Raudkivi Scouring, Hydraulic Structures Design Manual Series, 2, CRC Press, 2020 | DOI

[2] P. Khwairakpam; A. Mazumdar Local Scour Around Hydraulic, Int. J. Recent Trends Eng. Res., Volume 1 (2009) no. 6, pp. 59-61

[3] C. Chevalier; D. P. v. Bang; E. Durand; I. Charles; G. Herrier Scour and erosion phenomena occurring in waterways - recent advances, Scour and Erosion: Proceedings of the 7th International Conference on Scour and Erosion, CRC Press (2014), pp. 33-48

[4] M S Abdelmoaty; M. Zayed Using side flow jets as a scour countermeasure downstream of a sluice gate, Beni-Suef Univ. J. Basic Appl. Sci., Volume 10 (2021), 88 | DOI

[5] B. W. Melville; A. J. Raudkivi Flow characteristics in local scour at bridge piers, J. Hydraul. Res., Volume 15 (1997) no. 1, pp. 373-380 | DOI

[6] N. Rajaratnam Erosion by plane turbulent jet, J. Hydraul. Res., Volume 19 (1981) no. 4, pp. 339-358 | DOI

[7] S-Y. Lim; G. Yu Scouring Downstream of Sluice Gate, First International Conference on Scour of Foundations, Volume USA. College Station, Texas, Texas Transportation Inst., Publications Dept. (2002), pp. 395-409

[8] R. G. Martino; F. G. Ciani; A. Paterson; M. F. Piva Experimental study on the scour due to a water jet subjected to lateral confinement, Eur. J. Mech. B Fluids, Volume 75 (2019), pp. 219-227 | DOI

[9] S. Chatterjee; S. Ghosh; M. Chatterjee Local scour due to submerged horizontal jet, J. Hydraul. Eng., Volume 120 (1994) no. 8, pp. 973-992 | DOI

[10] R. Balachandar; H. Reddy Sediment Transport Processes and their Modelling Applications (A. J. Manning, ed.), InTech, 2013, pp. 177-210 | DOI

[11] C. Xie; S. Lim Effect of jet-flipping on scour development downstream of a sluice gate, 2012 6th. International Conference on Scour and Erosion (ICSE 6), Paris, France

[12] A. Bey; M. Faruque; R. Balachandar Effects of varying submergence and channel width on local scour by plane turbulent wall jets, J. Hydraul. Res., Volume 46 (2008) no. 6, pp. 764-776 | DOI

[13] J. Chauchat; Z. Cheng; T. Nagel; C. Bonamy; T. J. Hsu Sedfoam-2.0: a 3D two phase flow numerical model for sediment transport, Geosci. Model Dev,, Volume 10 (2017), pp. 4367-4392 | DOI

[14] Flow3d FLOW-3D Version 12.0, 2019 (Santa Fe, NM: Flow Science, Inc., https://www.flow3d.com)

[15] L. O. Amoudry Extension of k-ω turbulence closure to twophase sediment transport modelling: Application to oscillatory sheet flows, Adv. Water Resources, Volume 72 (2014), pp. 110-121 | DOI

[16] GDR MiDi On dense granular flows, Eur. Phys. J. E, Volume 14 (2014), pp. 341-365 | DOI

[17] V. Yakhot; S. A. Orszag Renormalization group analysis of turbulence I. Basic theory, J. Sci. Comput., Volume 1 (1986), pp. 3-51 | DOI | MR | Zbl

[18] V. Yakhot; L. M. Smith The renormalization group, the e-expansion and derivation of turbulence models, J. Sci. Comput., Volume 7 (1992), pp. 35-61 | DOI | MR | Zbl

[19] P. Nielsen Coastal bottom boundary layers and sediment transport, Advanced Series on Ocean Engineering, 4, World Scientific, 1992 | DOI

[20] E. Meyer-Peter; R. Müller Formulas for bed-load transport, Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research (Hydraulic Engineering Reports), IAHR (1948), pp. 39-64

[21] J. Chauchat A comprehensive two-phase flow model for unidirectional sheet-flows, J. Hydraul. Res. (2017), pp. 1-14 | DOI

[22] L. Schiller; A. Naumann Uber die Grundlegenden Berechungen bei der Schwerkraftaufbereitung, Z. Vereines Deutscher Inge., Volume 77 (1933), pp. 318-321

[23] K. Guizien; M. Dohmen-Janssen; G. Vittori 1DV bottom boundary layer modeling under combined wave and current: Turbulent separation and phase lag effects, J. Geophys. Res. Oceans, Volume 108 (2003), 3016 | DOI

[24] H. Danon; M. Wolfshtein; G. Hetsroni Numerical calculations of two-phase turbulent round jet, Int. J. Multiphase Flow, Volume 3 (1977), pp. 223-234 | DOI | Zbl

[25] C. P. Chen; P. E. Wood A turbulence closure model for dilute gas-particle flows, Can. J. Chem. Eng., Volume 63 (1985), pp. 349-360 | DOI

[26] W. M. Kranenburg; T. J. Hsu Two-phase modeling of sheet-flow beneath waves and its dependence on grain size and streaming, Adv. Water Resources, Volume 72 (2014), pp. 57-70 | DOI

[27] Z. Cheng; T. J. Hsu; J. Calantoni SedFoam: A multidimensional Eulerian two-phase model for sediment transport and its application to momentary bed failure, Coast. Eng., Volume 119 (2017), pp. 32-50 | DOI

[28] P. C. Johnson; R. Jackson Frictional–collisional constitutive relations for granular materials, with application to plane shearing, J. Fluid Mech., Volume 176 (1987), pp. 67-93 | DOI

[29] P. Jop; Y. Forterre; O. Pouliquen A constitutive law for dense granular flows, Nature, Volume 441 (2006), pp. 727-730 | DOI

[30] E. Usta Numerical Investigation of Hydraulic Characteristics of Lalaei Dam Spillway and Comparison with Physical Model Study, Ph. D. Thesis, Middle East Technical University, Ankara, Turkey (2014)

[31] C. W. Hirt; J. M. Sicilian A porosity technique for the definition of obstacles in rectangular cell meshes, Proceedings of the 4th International Conference on Numerical Ship Hydrodynamics, Washington DC, USA (1985)

[32] R. Daneshfaraz; A. Ghaderi; A. Akhtari; S. Di Francesco On the Effect of Block Roughness in Ogee Spillways with Flip Buckets, Fluids, Volume 5 (2020), 182 | DOI

[33] H. Samma; A. Khosrojerd; M. Rostam-Abadi; M. Mehraein; Y. Cataño-Lopera Numerical simulation of scour and flow field over movable bed induced by a submerged wall jet, J. Hydroinformatics, Volume 22 (2020) no. 2, pp. 385-401 | DOI | Zbl

[34] R. Soulsby Ch. 9: Bedload transport in Dynamics of Marine Sand, Dynamics of marine sands, Thomas Telford Publishing, 1997 | DOI

[35] L. C. Van Rijn Sediment Transport, Part I: Bed load transport, J. Hydraul. Eng., Volume 110 (1984) no. 10, pp. 1431-1456 | DOI

[36] M. Ghasemi; S. Soltani-Gerdefaramarzi The Scour Bridge Simulation around a Cylindrical Pier Using Flow-3D, J. Hydro-Environ Res., Volume 1 (2017) no. 2, pp. 46-54 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A field study of the confluence between Negro and Solimões Rivers. Part 2: Bed morphology and stratigraphy

Marco Ianniruberto; Mark Trevethan; Arthur Pinheiro; ...

C. R. Géos (2018)


Geomorphology and kinematics of debris flows with high entrainment rates: A case study in the South French Alps

Alexandre Remaître; Jean-Philippe Malet; Olivier Maquaire

C. R. Géos (2011)


A field study of the confluence between Negro and Solimões Rivers. Part 1: Hydrodynamics and sediment transport

Carlo Gualtieri; Naziano Filizola; Marco de Oliveira; ...

C. R. Géos (2018)