Three-dimensional numerical simulations were performed, based on an experimental study of sediments scour process subjected to a water jet downstream of a submerged sluice gate with a rectangular opening at the bottom in a very confined channel. This experimental geometry, little studied in the literature, presents two particular phenomena in the dynamics of the scour process: a change of the dune form and a digging - refilling cycles of the scour. Two different hydro-morphodynamic models, SedFoam and FLOW-3D, were used and calibrated according to the experimental data. SedFoam is a multiphase flow model based on the open-source tool-box OpenFOAM and uses a coupling method between the fluid and particles phases in the RANS equations through the dense granular rheology, while FLOW-3D is an CFD software that uses a sediment scour model to perform sediment transport through bedload and suspended load transport equations without direct coupling with the fluid phase. The use of these specific three-dimensional numerical models in the case of the water flow with a jet in a very confined channel has allowed to evaluate the accuracy of turbulence models used. The RNG turbulence model was used in FLOW-3D while the turbulence model was used in SedFoam. The RNG turbulence model is more numerically stable for a finer mesh size. Based on the comparison of the three-dimensional numerical results with the experimental data, a discussion has allowed to explain the two particular phenomena in the dynamics of the scour process, a change of the dune form and a digging - refilling cycles of the scour, observed in the experimental data. It was concluded that the dune shape-shifting is due to the hydro-morphodynamic behaviour of the interaction of fluid-particles in presence of high degree of confinement while the digging - refilling phenomenon is explained by the physical mechanics behaviour of the particles phase due to gravity.
Des simulations numériques tridimensionnelles ont été menées pour étudier l’affouillement des sédiments sous un jet d’eau dans un canal confiné. L’étude présente 2 phénomènes pendant l’affouillement : un changement de forme de la dune et des cycles de creusement-remplissage. Deux modèles hydro-morphodynamiques ont été utilisés et calibrés avec des données expérimentales. Les résultats ont montré que le changement de forme de dune était dû à l’interaction fluide-particules, tandis que le phénomène de creusement-remplissage était dû au comportement des particules sous l’effet de la gravité. Cette étude donne un aperçu du processus d’affouillement et de l’importance d’utiliser des modèles numériques appropriés.
Revised:
Accepted:
Published online:
Mots-clés : affouillement, jet d’eau confiné, modélisation CFD tridimensionnelle, modélisation de la turbulence, écoulement multiphasique, modèle d’affouillement des sédiments
Alaa Ghzayel 1; Anthony Beaudoin 1
@article{CRMECA_2023__351_G2_525_0, author = {Alaa Ghzayel and Anthony Beaudoin}, title = {Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, {SedFoam} and {FLOW-3D}}, journal = {Comptes Rendus. M\'ecanique}, pages = {525--550}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, year = {2023}, doi = {10.5802/crmeca.223}, language = {en}, }
TY - JOUR AU - Alaa Ghzayel AU - Anthony Beaudoin TI - Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, SedFoam and FLOW-3D JO - Comptes Rendus. Mécanique PY - 2023 SP - 525 EP - 550 VL - 351 PB - Académie des sciences, Paris DO - 10.5802/crmeca.223 LA - en ID - CRMECA_2023__351_G2_525_0 ER -
%0 Journal Article %A Alaa Ghzayel %A Anthony Beaudoin %T Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, SedFoam and FLOW-3D %J Comptes Rendus. Mécanique %D 2023 %P 525-550 %V 351 %I Académie des sciences, Paris %R 10.5802/crmeca.223 %G en %F CRMECA_2023__351_G2_525_0
Alaa Ghzayel; Anthony Beaudoin. Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, SedFoam and FLOW-3D. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 525-550. doi : 10.5802/crmeca.223. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.223/
[1] Scouring, Hydraulic Structures Design Manual Series, 2, CRC Press, 2020 | DOI
[2] Local Scour Around Hydraulic, Int. J. Recent Trends Eng. Res., Volume 1 (2009) no. 6, pp. 59-61
[3] Scour and erosion phenomena occurring in waterways - recent advances, Scour and Erosion: Proceedings of the 7th International Conference on Scour and Erosion, CRC Press (2014), pp. 33-48
[4] Using side flow jets as a scour countermeasure downstream of a sluice gate, Beni-Suef Univ. J. Basic Appl. Sci., Volume 10 (2021), 88 | DOI
[5] Flow characteristics in local scour at bridge piers, J. Hydraul. Res., Volume 15 (1997) no. 1, pp. 373-380 | DOI
[6] Erosion by plane turbulent jet, J. Hydraul. Res., Volume 19 (1981) no. 4, pp. 339-358 | DOI
[7] Scouring Downstream of Sluice Gate, First International Conference on Scour of Foundations, Volume USA. College Station, Texas, Texas Transportation Inst., Publications Dept. (2002), pp. 395-409
[8] Experimental study on the scour due to a water jet subjected to lateral confinement, Eur. J. Mech. B Fluids, Volume 75 (2019), pp. 219-227 | DOI
[9] Local scour due to submerged horizontal jet, J. Hydraul. Eng., Volume 120 (1994) no. 8, pp. 973-992 | DOI
[10] Sediment Transport Processes and their Modelling Applications (A. J. Manning, ed.), InTech, 2013, pp. 177-210 | DOI
[11] Effect of jet-flipping on scour development downstream of a sluice gate, 2012 6th. International Conference on Scour and Erosion (ICSE 6), Paris, France
[12] Effects of varying submergence and channel width on local scour by plane turbulent wall jets, J. Hydraul. Res., Volume 46 (2008) no. 6, pp. 764-776 | DOI
[13] Sedfoam-2.0: a 3D two phase flow numerical model for sediment transport, Geosci. Model Dev,, Volume 10 (2017), pp. 4367-4392 | DOI
[14] FLOW-3D Version 12.0, 2019 (Santa Fe, NM: Flow Science, Inc., https://www.flow3d.com)
[15] Extension of turbulence closure to twophase sediment transport modelling: Application to oscillatory sheet flows, Adv. Water Resources, Volume 72 (2014), pp. 110-121 | DOI
[16] On dense granular flows, Eur. Phys. J. E, Volume 14 (2014), pp. 341-365 | DOI
[17] Renormalization group analysis of turbulence I. Basic theory, J. Sci. Comput., Volume 1 (1986), pp. 3-51 | DOI | MR | Zbl
[18] The renormalization group, the e-expansion and derivation of turbulence models, J. Sci. Comput., Volume 7 (1992), pp. 35-61 | DOI | MR | Zbl
[19] Coastal bottom boundary layers and sediment transport, Advanced Series on Ocean Engineering, 4, World Scientific, 1992 | DOI
[20] Formulas for bed-load transport, Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research (Hydraulic Engineering Reports), IAHR (1948), pp. 39-64
[21] A comprehensive two-phase flow model for unidirectional sheet-flows, J. Hydraul. Res. (2017), pp. 1-14 | DOI
[22] Uber die Grundlegenden Berechungen bei der Schwerkraftaufbereitung, Z. Vereines Deutscher Inge., Volume 77 (1933), pp. 318-321
[23] 1DV bottom boundary layer modeling under combined wave and current: Turbulent separation and phase lag effects, J. Geophys. Res. Oceans, Volume 108 (2003), 3016 | DOI
[24] Numerical calculations of two-phase turbulent round jet, Int. J. Multiphase Flow, Volume 3 (1977), pp. 223-234 | DOI | Zbl
[25] A turbulence closure model for dilute gas-particle flows, Can. J. Chem. Eng., Volume 63 (1985), pp. 349-360 | DOI
[26] Two-phase modeling of sheet-flow beneath waves and its dependence on grain size and streaming, Adv. Water Resources, Volume 72 (2014), pp. 57-70 | DOI
[27] SedFoam: A multidimensional Eulerian two-phase model for sediment transport and its application to momentary bed failure, Coast. Eng., Volume 119 (2017), pp. 32-50 | DOI
[28] Frictional–collisional constitutive relations for granular materials, with application to plane shearing, J. Fluid Mech., Volume 176 (1987), pp. 67-93 | DOI
[29] A constitutive law for dense granular flows, Nature, Volume 441 (2006), pp. 727-730 | DOI
[30] Numerical Investigation of Hydraulic Characteristics of Lalaei Dam Spillway and Comparison with Physical Model Study, Ph. D. Thesis, Middle East Technical University, Ankara, Turkey (2014)
[31] A porosity technique for the definition of obstacles in rectangular cell meshes, Proceedings of the 4th International Conference on Numerical Ship Hydrodynamics, Washington DC, USA (1985)
[32] On the Effect of Block Roughness in Ogee Spillways with Flip Buckets, Fluids, Volume 5 (2020), 182 | DOI
[33] Numerical simulation of scour and flow field over movable bed induced by a submerged wall jet, J. Hydroinformatics, Volume 22 (2020) no. 2, pp. 385-401 | DOI | Zbl
[34] Ch. 9: Bedload transport in Dynamics of Marine Sand, Dynamics of marine sands, Thomas Telford Publishing, 1997 | DOI
[35] Sediment Transport, Part I: Bed load transport, J. Hydraul. Eng., Volume 110 (1984) no. 10, pp. 1431-1456 | DOI
[36] The Scour Bridge Simulation around a Cylindrical Pier Using Flow-3D, J. Hydro-Environ Res., Volume 1 (2017) no. 2, pp. 46-54 | DOI
Cited by Sources:
Comments - Policy