[Dynamique sous écoulement des globules rouges et de leurs contreparties biomimétiques]
Nous passons en revue les progrès expérimentaux, théoriques et numériques réalisés dans lʼétude de la dynamique des globules rouges et des systèmes biomimétiques, les vésicules et capsules sous écoulement. Nous mettons lʼaccent sur les approches continues de la modélisation de la déformabilité des cellules ainsi que sur la rhéologie du sang.
We review recent experimental, theoretical, and computational studies of red blood cells and their mimics, vesicles and capsules, in flow. We focus on the continuum approach in modeling cell deformability and blood rheology.
Mot clés : Membranes lipidiques, Vésicules, Capsules, Globules rouges, Rhéologie du sang
Petia M. Vlahovska 1 ; Dominique Barthes-Biesel 2 ; Chaouqi Misbah 3
@article{CRPHYS_2013__14_6_451_0, author = {Petia M. Vlahovska and Dominique Barthes-Biesel and Chaouqi Misbah}, title = {Flow dynamics of red blood cells and their biomimetic counterparts}, journal = {Comptes Rendus. Physique}, pages = {451--458}, publisher = {Elsevier}, volume = {14}, number = {6}, year = {2013}, doi = {10.1016/j.crhy.2013.05.001}, language = {en}, }
TY - JOUR AU - Petia M. Vlahovska AU - Dominique Barthes-Biesel AU - Chaouqi Misbah TI - Flow dynamics of red blood cells and their biomimetic counterparts JO - Comptes Rendus. Physique PY - 2013 SP - 451 EP - 458 VL - 14 IS - 6 PB - Elsevier DO - 10.1016/j.crhy.2013.05.001 LA - en ID - CRPHYS_2013__14_6_451_0 ER -
Petia M. Vlahovska; Dominique Barthes-Biesel; Chaouqi Misbah. Flow dynamics of red blood cells and their biomimetic counterparts. Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 451-458. doi : 10.1016/j.crhy.2013.05.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.05.001/
[1] Cellular-scale hydrodynamics, Biomed. Mater., Volume 3 (2008), p. 034011
[2] Vesicles and red blood cells in shear flow, Soft Matter, Volume 4 (2008), pp. 653-657
[3] Vesicles and red blood cells: From individual dynamics to rheology, C. R. Physique, Volume 10 (2009), pp. 775-789
[4] Microconfined flow behavior of red blood cells in vitro, C. R. Physique, Volume 10 (2009), pp. 751-763
[5] Red blood cell dynamics: From cell deformation to atp release, Integr. Biol., Volume 3 (2011), pp. 972-981
[6] Configurations of fluid membranes and vesicles, Adv. Phys., Volume 46 (1997), pp. 13-137
[7] Capsule motion is flow: Deformation and membrane buckling, C. R. Physique, Volume 10 (2010), pp. 764-774
[8] Modeling the motion of capsules in flow, Curr. Opin. Colloid Interface Sci., Volume 16 (2011), pp. 3-12
[9] Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects, Annu. Rev. Biophys. Biomol. Struct., Volume 23 (1994), pp. 787-818
[10] Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships, J. Mater. Res., Volume 21 (2006), pp. 1871-1877
[11] Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease, Soft Matter, Volume 9 (2013), pp. 28-37 | DOI
[12] http://www.nature.com/horizon/livingfrontier/background/figs/membrane_f2.html
[13] Elastic properties of lipid bilayers – theory and possible experiments, Z. Naturforsch., Volume 28c (1973), pp. 693-703
[14] Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, Florida, 1980
[15] Structure and deformation properties of red blood cells: Concepts and quantitative methods (S. Fleischer; B. Fleischer, eds.), Methods in Enzymology, vol. 173, Academic Press, 1989, pp. 3-35
[16] Echinocyte shapes: Bending, stretching, and shear determine bump shape and spacing, Biophys. J., Volume 82 (2002), pp. 1756-1772
[17] Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer-couple hypothesis from membrane mechanics, Proc. Natl. Acad. Sci. USA, Volume 99 (2002), pp. 16766-16769
[18] Minimum-energy vesicle and cell shapes calculated using spherical harmonics parameterization, Soft Matter, Volume 7 (2011), pp. 2138-2143
[19] Irect measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton, Biophys. J., Volume 81 (2001), pp. 43-56
[20] A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys. J., Volume 76 (1999), pp. 1145-1151
[21] Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids, Volume 51 (2003), pp. 2259-2280
[22] Active rheology of phospholipid vesicles, Phys. Rev. E, Volume 84 (2011), p. 021930
[23] Red blood cell dynamics: From spontaneous fluctuations to non-linear response, Soft Matter, Volume 7 (2011), pp. 2042-2051
[24] On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields, Biophys. J., Volume 54 (1988), pp. 495-508
[25] Effect of cholesterol on the rigidity of saturated and unsaturated membranes: Fluctuation and electrodeformation analysis of giant vesicles, Soft Matter, Volume 6 (2010), pp. 1472-1482
[26] Measurement of red blood cell mechanics during morphological changes, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 6731-6736
[27] Atp-dependent mechanics of red blood cells, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 15320-15325
[28] Modeling and Simulation of Capsules and Biological Cells, CRC Press, 2003
[29] The time-dependent deformation of a capsule freely suspended in a linear shear flow, J. Fluid Mech., Volume 113 (1981), pp. 251-267
[30] Interfacial Transport Processes and Rheology, Butterworth-Heinemann, 1991
[31] Dynamics of lipid vesicles – from thermal fluctuations to rheology (A. Iglic, ed.), Advances in Planar Lipid Bilayers and Liposomes, vol. 14, Elsevier, 2011, pp. 257-292
[32] Time resolved membrane fluctuation spectroscopy, Soft Matter, Volume 8 (2012), pp. 5317-5326
[33] Metabolic remodeling of the human red blood cell membrane, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 1289-1294
[34] Fluctuations of the red blood cell membrane: Relation to mechanical properties and lack of atp dependence, Biophys. J., Volume 94 (2008), pp. 4134-4144
[35] Swinging of red blood cells under shear flow, Phys. Rev. Lett., Volume 98 (2007), p. 188302
[36] Chaotic dynamics of red blood cells in a sinusoidal flow, Phys. Rev. Lett., Volume 104 (2010), p. 168101
[37] Red blood cell deformation in microconfined flow, Soft Matter, Volume 5 (2009), pp. 3736-3740
[38] Red blood cell clustering in Poiseuille microcapillary flow, Phys. Fluids, Volume 24 (2012), p. 051903
[39] Phase diagram of single vesicle dynamical states in shear flow, Phys. Rev. Lett., Volume 102 (2009), p. 118105
[40] Dynamics of vesicles in shear and rotational flows: Modal dynamics and phase diagram, Phys. Fluids, Volume 23 (2011), p. 041905
[41] Shape diagram of vesicles in Poiseuille flow, Phys. Rev. Lett., Volume 108 (2012), p. 178106
[42] Shear induced deformation of microcapsules: Shape oscillations and membrane folding, Colloids Surf. A, Volume 183–185 (2001), pp. 123-132
[43] Flow of artificial microcapsules in microfluidic channels: A method for determining the elastic properties of the membrane, Phys. Fluids, Volume 20 (2008) no. 12, p. 123102 http://link.aip.org/link/PHFLE6/v20/i12/p123102/s1&Agg=doi | DOI
[44] Comparison between measurements of elasticity and free amino group content of ovalbumin microcapsule membranes: Discrimination of the cross-linking degree, J. Colloid Interface Sci., Volume 355 (2011) no. 1, pp. 81-88 http://www.ncbi.nlm.nih.gov/pubmed/21194705 | DOI
[45] Full dynamics of a red blood cell in shear flow, PNAS, Volume 109 (2012), p. 20808
[46] Frequency spectrum of the flicker phenomenon in erythrocytes, J. Phys. (France), Volume 36 (1975), pp. 1035-1047
[47] Dynamical fluctuations of droplet microemulsions and vesicles, Phys. Rev. A, Volume 36 (1987), pp. 4371-4379
[48] Interpreting membrane scattering experiments at the mesoscale: The contribution of dissipation within the bilayer, J. Chem. Phys., Volume 98 (2010), p. L9-L11
[49] The intermediate scattering function for lipid bilayer membranes: From nanometers to microns, J. Chem. Phys., Volume 135 (2011), p. 194701
[50] Dynamics of viscoelastic membranes, Phys. Rev. E, Volume 66 (2002), p. 061606
[51] Viscoelastic dynamics of spherical composite vesicles, Phys. Rev. E, Volume 71 (2005), p. 021905
[52] Physics of cell elasticity, shape and adhesion, Physica A, Volume 352 (2005), pp. 171-201
[53] Vacillating breathing and tumbling of vesicles under shear flow, Phys. Rev. Lett., Volume 96 (2006), p. 028104
[54] Dynamics of a viscous vesicle in linear flows, Phys. Rev. E, Volume 75 (2007), p. 016313
[55] Nearly spherical vesicles in an external flow, New J. Phys., Volume 10 (2008), p. 043044
[56] Vesicles under simple shear flow: Elucidating the role of relevant control parameters, Phys. Rev. E, Volume 80 (2009), p. 061905
[57] Analytical progress in the theory of vesicles under linear flow, Phys. Rev. E, Volume 81 (2010), p. 061904
[58] Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram, Phys. Rev. E, Volume 83 (2011), p. 031921
[59] Dynamics of ransient pores in stretched vesicles, Proc. Natl. Acad. Sci., Volume 96 (1999), pp. 10591-10596
[60] Monolayer slip effects on the dynamics of a lipid bilayer vesicle in a viscous flow, J. Fluid Mech., Volume 647 (2010), pp. 403-419
[61] Vesicle electrohydrodynamics, Phys. Rev. E, Volume 83 (2011), p. 046309
[62] Vesicle tumbling inhibited by inertia, Phys. Fluids, Volume 24 (2012), p. 031901
[63] Dynamic modes of quasispherical vesicles: Exact analytical solutions, Phys. Rev. E, Volume 86 (2012), p. 051915
[64] Symmetry breaking of vesicle shapes in Poiseuille flow, Phys. Rev. E, Volume 84 (2011), p. 011902
[65] Settling of a vesicle in the limit of quasispherical shapes, J. Fluid Mech., Volume 690 (2012), pp. 227-261
[66] Why do red blood cells have asymmetric shapes even in a symmetric flow?, Phys. Rev. Lett., Volume 103 (2009), p. 188101
[67] Complexity of vesicle microcirculation, Phys. Rev. E, Volume 84 (2011), p. 041906
[68] Red blood cells and other nonspherical capsules in shear flow: Oscillatory dynamics and the tank-treading-to-tumbling transition, Phys. Rev. Lett., Volume 98 (2007), p. 078301
[69] Elastic capsules in shear flow: Analytical solutions for constant and time-dependent shear rates, Eur. Phys. J. E, Volume 29 (2009), pp. 399-413
[70] Swinging and synchronized rotations of red blood cells in simple shear flow, Phys. Rev. E, Volume 80 (2009), p. 021902
[71] Swinging and tumbling of elastic capsules in shear flow, J. Fluid Mech., Volume 605 (2008), pp. 207-226
[72] Dynamic motion of red blood cells in simple shear flow, Phys. Fluids, Volume 20 (2008), p. 112106
[73] Dynamics of nonspherical capsules in shear flow, Phys. Rev. E, Volume 80 (2009), p. 016307
[74] Dynamics of a non-spherical microcapsule with incompressible interface in shear flow, J. Fluid Mech., Volume 678 (2011), pp. 221-247
[75] Motion of near-spherical micro-capsule in planar external flow, JETP Lett., Volume 94 (2011), pp. 513-518
[76] Micro-capsules in shear flow, J. Phys. Condens. Matter, Volume 23 (2011), p. 184113
[77] Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992
[78] Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of capsule viscosity, J. Fluid Mech., Volume 361 (1998), pp. 117-143
[79] Transient response of a capsule subjected to varying flow conditions: Effect of internal fluid viscosity and membrane elasticity, Phys. Fluids, Volume 12 (2000), pp. 948-957
[80] Spherical capsules in three-dimensional unbounded Stokes flow: Effect of the membrane constitutive law and onset of buckling, J. Fluid Mech., Volume 516 (2004), pp. 303-334
[81] Spindles, cusps, and bifurcation for capsules in Stokes flow, Phys. Rev. Lett., Volume 101 (2008) no. 20, p. 208102 | DOI
[82] Coupling of finite element and boundary integral methods for a capsule in a Stokes flow, Int. J. Numer. Methods Eng., Volume 83 (2010), pp. 829-850
[83] Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes, J. Fluid Mech., Volume 676 (2011), pp. 318-347
[84] Flow of a spherical capsule in a pore with circular or square cross-section, J. Fluid Mech., Volume 705 (2012), pp. 176-194
[85] The dynamics of a vesicle in a wall-bound shear flow, Phys. Fluids, Volume 23 (2011), p. 121901
[86] 3d vesicle dynamics simulations with a linearly triangulated surface, J. Comput. Phys., Volume 230 (2011), pp. 1020-1034
[87] A fast algorithm for simulating vesicle flows in three dimensions, J. Comput. Phys., Volume 230 (2011), pp. 5610-5634
[88] A numerical method for simulating the dynamics of 3d axisymmetric vesicles suspended in viscous flows, J. Comput. Phys., Volume 228 (2009), pp. 7233-7249
[89] Dynamic simulation of locally inextensible vesicles suspended in an arbitrary two-dimensional domain, a boundary integral method, J. Comput. Phys., Volume 229 (2010), pp. 6466-6484
[90] Dynamics of multicomponent vesicles in a viscous fluid, J. Comput. Phys., Volume 229 (2010), pp. 119-144
[91] A spectral boundary integral method for flowing blood cells, J. Comput. Phys., Volume 229 (2010), pp. 3726-3744
[92] Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling, Biophys. J., Volume 99 (2010), pp. 2906-2916
[93] Two-dimensional vesicle dynamics under shear flow: Effect of confinement, Phys. Rev. E, Volume 83 (2011), p. 066319
[94] Vesicle migration and spatial organization driven by flow line curvature, Phys. Rev. Lett., Volume 106 (2011), p. 028101
[95] Shear-induced particle migration and margination in a cellular suspension, Phys. Fluids, Volume 24 (2012), p. 011902
[96] The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules, J. Fluid Mech., Volume 685 (2011), pp. 202-234
[97] Characteristic spatial scale of vesicle pair interactions in a plane linear flow, Phys. Rev. E, Volume 85 (2012), p. 056306
[98] Micro–macro link in rheology of erythrocyte and vesicle suspensions, Biophys. J., Volume 95 (2008) no. 6, p. L33-L35
[99] A level set projection model of lipid vesicles in general flows, J. Comput. Phys., Volume 230 (2011), pp. 8192-8215
[100] Comparison between advected-field and level-set methods in the study of vesicle dynamics, Physica D, Volume 241 (2012), pp. 1146-1157
[101] Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., Volume 212 (2006), pp. 757-777
[102] Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow, Phys. Rev. E, Volume 84 (2011), p. 026314
[103] Tank-treading and tumbling frequencies of capsules and red blood cells, Phys. Rev. E, Volume 83 (2011), p. 046305
[104] A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales, J. Comput. Phys., Volume 224 (2007), pp. 1255-1292
[105] Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations, J. Comput. Phys., Volume 230 (2011), pp. 2821-2837
[106] Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects, Q. Rev. Biophys., Volume 44 (2011), pp. 391-432
Cité par Sources :
Commentaires - Politique