In both continuous and discrete settings, Laplace operators appear quite commonly in the modeling of natural phenomena, in several context: diffusion, heat propagation, porous media, fluid flows through pipes, electricity.... In these contexts, the discrete Laplace operator enjoys all the properties of its continuous counterpart, in particular: self-adjointness, variational formulation, stochastic interpretation, mean value property, maximum principle, ...In a first part, we give a detailed description of the correspondence between these mathematical properties and modeling considerations, in contexts where the continuous and the discrete settings perfectly match. In a second part, we describe a pathological situation, in the context of granular crowd motion models. Accounting for the non-overlapping constraint between hard discs leads to a particular operator acting on a field of Lagrange multipliers, defined on the dual graph of the contact network. This operator is defective in a certain sense: although it is the microscopic counterpart of the macroscopic Laplace operator, this discrete operator indeed lacks some properties, in particular the maximum principle. We investigate here how this very defectivity may explain some paradoxical phenomena that are observed in crowd motions and granular materials, phenomena that are not reproduced by macroscopic models.
Aux niveaux continu et discret, l’opérateur de Laplace intervient de façon très courante dans la modélisation de phénomènes naturels, dans de nombreux contextes : diffusion, propagation de la chaleur, milieux poreux, écoulement de fluides dans des conduits, électricité.... Dans ces contextes, le laplacien discret possède toutes les propriétés de son pendant continu : caractère auto-adjoint, structure variationnelle, interprétation stochastique, propriété de la valeur moyenne, principe du maximum, .... Dans une première partie, nous proposons une description détaillée des liens entre ces propriétés et les aspects de modélisations, dans des contextes où les notion continues et discrètes se correspondent parfaitement. Dans une seconde partie, nous décrivons une situation pathologique, dans le contexte de la modélisation de foules d’un point de vue granulaire. La prise en compte de la contrainte de non recouvrement entre grains rigides conduit à un opérateur particulier qui agit sur les champs de multiplicateurs de Lagrange, définis sur le graphe dual du réseau de contacts. Cet opérateur est déficient dans un certain sens : bien qu’il apparaisse comme le pendant discret du laplacien continu, il ne vérifie pas certaines des propriétés usuelles du laplacien, en particulier le principe du maximum. Nous explorons comment cette déficience permet d’expliquer certains effets paradoxaux observés en mouvements de foules, que les modèles continus ne reproduisent pas.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : Laplacien discret, principe du maximum, mouvements de foules, effet faster-is-slower
Bertrand Maury 1
@article{CRMECA_2023__351_S1_615_0, author = {Bertrand Maury}, title = {Defective {Laplacians} and paradoxical phenomena in crowd motion modeling}, journal = {Comptes Rendus. M\'ecanique}, pages = {615--646}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.205}, language = {en}, }
Bertrand Maury. Defective Laplacians and paradoxical phenomena in crowd motion modeling. Comptes Rendus. Mécanique, The scientific legacy of Roland Glowinski, Volume 351 (2023) no. S1, pp. 615-646. doi : 10.5802/crmeca.205. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.205/
[1] The Respiratory System in Equations, MS&A. Modeling, Simulation and Applications, 7, Springer, Milano, 2013 | DOI | MR | Zbl
[2] Spectral graph theory efficiently characterizes ventilation heterogeneity in lung airway networks, J. R. Soc. Interface, Volume 17 (2020), 20200253 | DOI
[3] Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Math. Models Methods Appl. Sci., Volume 24 (2014) no. 8, pp. 1453-1455 | Zbl
[4] A new look to non-Fickian diffusion, Appl. Math. Modelling, Volume 39 (2015) no. 1, pp. 194-204 | DOI | MR | Zbl
[5] Non-Homogeneous Boundary Value Problems and Applications, Grundlehren der Mathematischen Wissenschaften, 181, Springer, Berlin, Heidelberg, New York, 1972 | Zbl
[6] Whitney Forms of Higher Degree, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 2369-2386 | DOI | MR | Zbl
[7] Classical Potential Theory and Its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften, 262, Springer, 1984 | DOI | Zbl
[8] Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, 224, Springer, 2001 | DOI | Zbl
[9] Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, 113, Springer, 1991 | Zbl
[10] Lectures on Balayage, Clifford algebras and potential theory. Proceedings of the summer school, Mekrijärvi, Finland, June 24–28, 2002 (Sirkka-Liisa Eriksson, ed.) (Report series. Department of Mathematics, University of Joensuu), Volume 7, University of Joensuu, Department of Mathematics, Joensuu, 2002, pp. 17-63 | Zbl
[11] Some Continuous Monte Carlo Methods for the Dirichlet Problem, Ann. Math. Stat., Volume 27 (1956) no. 3, pp. 569-589 | DOI | MR | Zbl
[12] Probability on Trees and Networks, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2016 | DOI | Zbl
[13] Fluid-Particle Flow: a Symmetric Formulation, C. R. Acad. Sci. Paris Sér. I Math., Volume 324 (1997), pp. 1079-1084 | MR | Zbl
[14] A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow, Volume 25 (1999) no. 5, pp. 755-794 | DOI | MR | Zbl
[15] A time-stepping scheme for inelastic collisions. Numerical handling of the nonoverlapping constraint, Numer. Math., Volume 102 (2006), pp. 649-679 | DOI | MR | Zbl
[16] Pressureless Euler equations with maximal density constraint : a time-splitting scheme, Topological Optimization and Optimal Transport: In the Applied Sciences (Maïtine Bergounioux et al., eds.), Walter de Gruyter, 2017, pp. 333-355 | DOI | Zbl
[17] Finite volume approximations of the Euler system with variable congestion, Comput. Fluids, Volume 169 (2018), pp. 23-39 | DOI | MR | Zbl
[18] Soft congestion approximation to the one-dimensional constrained Euler equations, Nonlinearity, Volume 34 (2021) no. 10, pp. 6901-6929 | DOI | MR | Zbl
[19] A macroscopic Crowd Motion Model of the gradient-flow type, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 10, pp. 1787-1821 | DOI | MR | Zbl
[20] Numerical Analysis of Variational Inequalities, Studies in Mathematics and its Applications, 8, North-Holland, Amsterdam, New York, 2000 | Zbl
[21] Multibody and macroscopic impact laws: a Convex Analysis standpoint (Giacomo Ed Albi; Sara Merino-Aceituno; Alessia Nota; Mattia Zanella, eds.) (Trails in Kinetic Theory: Foundational Aspects and Numerical Methods), Springer, 2021, pp. 97-139 | DOI
[22] A discrete contact model for crowd motion, ESAIM, Math. Model. Numer. Anal., Volume 45 (2011) no. 1, pp. 145-168 | DOI | Numdam | MR | Zbl
[23] Understanding Capacity Drop for designing pedestrian environments, Proceedings of Walk 21: Everyday Walking Culture (2005)
[24] Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Math. Models Methods Appl. Sci., Volume 24 (2014) no. 13, pp. 2685-2722 | DOI | MR | Zbl
[25] Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks, ESAIM, Math. Model. Numer. Anal., Volume 50 (2016) no. 5, pp. 1269-1287 | DOI | Numdam | MR | Zbl
[26] When slower is faster, Complexity, Volume 21 (2015), pp. 9-15 | DOI
[27] Crowds in Equations. An introduction to the microscopic modeling of crowds, Advanced Textbooks in Mathematics, World Scientific, Hackensack, 2019 | Zbl
[28] Décomposition orthogonale d’un espace Hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris, Volume 255 (1962), pp. 238-240 | Zbl
Cited by Sources:
Comments - Policy