Comptes Rendus
Discrete moments models for Vlasov equations with non constant strong magnetic limit
Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 307-329.

We describe the structure of an original application of the method of moments to the Vlasov–Poisson system with non constant strong magnetic field in three dimensions of space. Using basis functions which are aligned with the magnetic field, one obtains a Friedrichs system where the kernel of the singular part is made explicit. A projection of the original model on this kernel yields what we call the reduced model. Basic numerical tests of the field illustrate the accuracy of our implementation. A new generating formula for Laguerre polynomials is obtained in the appendix as a byproduct of the analysis.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.219
Keywords: moment method, Vlaslov equations, numerical method

Frédérique Charles 1; Bruno Després 1; Ruiyang Dai 1; Sever A. Hirstoaga 2

1 Laboratoire Jacques-Louis Lions (LJLL), Sorbonne-Université, CNRS, Université de Paris, 75005, Paris, France
2 project-team ALPINES, Sorbonne Université and Université de Paris, CNRS, Laboratoire Jacques-Louis Lions (LJLL), 75589 Paris Cedex 12, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_S1_307_0,
     author = {Fr\'ed\'erique Charles and Bruno Despr\'es and Ruiyang Dai and Sever A. Hirstoaga},
     title = {Discrete moments models for {Vlasov} equations with non constant strong magnetic limit},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {307--329},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S1},
     year = {2023},
     doi = {10.5802/crmeca.219},
     language = {en},
}
TY  - JOUR
AU  - Frédérique Charles
AU  - Bruno Després
AU  - Ruiyang Dai
AU  - Sever A. Hirstoaga
TI  - Discrete moments models for Vlasov equations with non constant strong magnetic limit
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 307
EP  - 329
VL  - 351
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.219
LA  - en
ID  - CRMECA_2023__351_S1_307_0
ER  - 
%0 Journal Article
%A Frédérique Charles
%A Bruno Després
%A Ruiyang Dai
%A Sever A. Hirstoaga
%T Discrete moments models for Vlasov equations with non constant strong magnetic limit
%J Comptes Rendus. Mécanique
%D 2023
%P 307-329
%V 351
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.219
%G en
%F CRMECA_2023__351_S1_307_0
Frédérique Charles; Bruno Després; Ruiyang Dai; Sever A. Hirstoaga. Discrete moments models for Vlasov equations with non constant strong magnetic limit. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 307-329. doi : 10.5802/crmeca.219. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.219/

[1] Kenro Miyamoto Plasma Physics and Controlled Nuclear Fusion, Springer Series on Atomic, Optical, and Plasma Physics, 38, Springer, 2005 | Zbl

[2] Thomas M. jun. Antonsen; Barton Lane Kinetic equations for low frequency instabilities in inhomogeneous plasmas, Phys. Fluids, Volume 23 (1980), pp. 1205-1214 | DOI | MR | Zbl

[3] A. J. Brizard; T. S. Hahm Foundations of non linear gyrokinetic theory, Rev. Mod. Phys., Volume 79 (2007) no. 2, pp. 421-468 | DOI | Zbl

[4] R. D. Hazeltine; A. A. Ware The drift kinetic equation for toroidal plasmas with large mass velocities, Plasma Phys., Volume 20 (1978) no. 7, pp. 673-678 | DOI

[5] F. Golse; L. Saint-Raymond The Vlasov–Poisson system with strong magnetic field, J. Math. Pures Appl., Volume 78 (1999) no. 8, pp. 791-817 | DOI | MR | Zbl

[6] Pierre Degond; Francis Filbet On the Asymptotic Limit of the Three Dimensional Vlasov–Poisson System for Large Magnetic Field: Formal Derivation, J. Stat. Phys., Volume 165 (2016) no. 4, pp. 765-784 | DOI | MR | Zbl

[7] Maxime Hauray; Anne Nouri Well-posedness of a diffusive gyro-kinetic model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 4, pp. 529-550 | DOI | Numdam | MR | Zbl

[8] Francis Filbet; L. Miguel Rodrigues Asymptotics of the three dimensional Vlasov equation in the large magnetic field limit, J. Éc. Polytech., Math., Volume 7 (2020), pp. 1009-1067 | DOI | Numdam | MR | Zbl

[9] Charlson C. Kim; Scott E. Parker Massively parallel three dimensional toroidal gyrokinetic flux-tube turbulence simulations, J. Comput. Phys., Volume 161 (2000), pp. 589-604 | Zbl

[10] A. Bottino; T. M. Tran; O. Sauter; J. Vaclavik; L. Villard Linear gyrokinetic simulations using particles for small perpendicular wavelength perturbations, Proc. Joint Varenna-Lausanne International Workshop Theory of Fusion Plasmas (2001), pp. 327-332

[11] N. R. Mandell; W. Dorland; M. Landreman Laguerre–Hermite Pseudo-Spectral Velocity Formulation of Gyrokinetics, J. Plasma Phys., Volume 84 (2018) no. 1, 905840108 | DOI

[12] V. Grandgirard; J. Abiteboul; J. Bigot; T. Cartier-Michaud; Nicolas Crouseilles et al. A 5D gyrokinetic full-f global semi-lagrangian code for flux-driven ion turbulence simulations, Comput. Phys. Commun., Volume 207 (2016), pp. 35-68 | DOI | MR | Zbl

[13] B. J. Frei; R. Jorge; P. Ricci A gyrokinetic model for the plasma periphery of tokamak devices, J. Plasma Phys., Volume 86 (2020) no. 2, 905860205 | DOI

[14] Emmanuel Frénod; Eric Sonnendrücker Homogenization of the Vlasov equation and of the Vlasov–Poisson system with a strong external magnetic field, Asymptotic Anal., Volume 18 (1998) no. 3-4, pp. 193-213 | MR | Zbl

[15] Emmanuel Frénod; Eric Sonnendrücker Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field, Math. Models Methods Appl. Sci., Volume 10 (2000) no. 4, pp. 539-553 | DOI | MR | Zbl

[16] Stef Possaner Gyrokinetics from variational averaging: Existence and error bounds, J. Math. Phys., Volume 59 (2018) no. 8, 082702 | DOI | MR | Zbl

[17] James P. Holloway Spectral velocity discretizations for the Vlasov–Maxwell equations, Transp. Theory Stat. Phys., Volume 25 (1996) no. 1, pp. 1-32 | DOI | MR | Zbl

[18] Gian Luca Delzanno Multi-dimensional, fully-implicit, spectral method for the Vlasov–Maxwell equations with exact conservation laws in discrete form, J. Comput. Phys., Volume 301 (2015), pp. 338-356 | DOI | MR | Zbl

[19] Bruno Després Symmetrization of Vlasov–Poisson equations, SIAM J. Math. Anal., Volume 46 (2014) no. 4, pp. 2554-2580 | DOI | MR | Zbl

[20] Gianmarco Manzini; Gian Luca Delzanno; J. Vencels; Stefano Markidis A Legendre-Fourier spectral method with exact conservation laws for the Vlasov–Poisson system, J. Comput. Phys., Volume 317 (2016), pp. 82-107 | DOI | MR | Zbl

[21] Joseph W. Schumer; James P. Holloway Vlasov simulations using velocity-scaled hermite representations, J. Comput. Phys., Volume 144 (1998) no. 2, pp. 626-661 | DOI | Zbl

[22] Francis Filbet; Marianne Bessemoulin-Chatard On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov–Poisson system, J. Comput. Phys., Volume 451 (2022), 110881 | MR | Zbl

[23] Francis Filbet; Tao Xiong Conservative discontinuous Galerkin/Hermite Spectral Method for the Vlasov–Poisson System, Commun. Appl. Math. Comput., Volume 4 (2022) no. 1, pp. 34-59 | DOI | MR | Zbl

[24] Francis Filbet; Tao Xiong A Hybrid Discontinuous Galerkin Scheme for Multi-scale Kinetic Equations, J. Comput. Phys., Volume 372 (2018), pp. 841-863 | DOI | MR | Zbl

[25] Eric Sonnendrücker Modèles cinétiques pour la fusion (2008) (Master notes)

[26] Frank Olver; Daniel Lozier; Ronald Boisvert; Charles Clark NIST Handbook of Mathematical Functions, Cambridge University Press, 2010 | Zbl

[27] Jens Madsen Full-F gyrofluid model, Phys. Plasmas, Volume 20 (2013), 072301 | DOI

[28] Gianmarco Manzini; Gian Luca Delzanno; J. Vencels; Stefano Markidis A Legendre–Fourier spectral method with exact conservation laws for the Vlasov–Poisson system, J. Comput. Phys., Volume 317 (2016), pp. 82-107 | DOI | MR | Zbl

[29] Roland Glowinski Finite element methods for incompressible viscous flow, Numerical methods for fluids (Part 3) (Handbook of Numerical Analysis), Volume 9, North-Holland, 2003, pp. 3-1176 | DOI | Zbl

[30] Youcef Saad; Martin H. Schultz Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., Volume 7 (1986) no. 3, pp. 856-869 | DOI | MR | Zbl

[31] Christophe Geuzaine; Jean-François Remacle Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng., Volume 79 (2009) no. 11, pp. 1309-1331 | DOI | MR | Zbl

[32] Michel Mehrenberger; Laurent Navoret; Nhung Pham Recurrence phenomenon for Vlasov–Poisson simulations on regular finite element mesh, Commun. Comput. Phys., Volume 28 (2020) no. 3, pp. 877-901 | DOI | MR | Zbl

[33] Frédérique Charles; Bruno Després; Alexandre Rege; Ricardo Weder The magnetized vlasov–ampère system and the bernstein–landau paradox, J. Stat. Phys., Volume 183 (2021) no. 2, pp. 1-57 | Zbl

[34] Alexandre Rege Kinetic models for magnetized plasmas, Ph. D. Thesis, Sorbonne Université, Paris, France (2021)

[35] Ira B. Bernstein Waves in a plasma in a magnetic field, Phys. Rev., II Ser., Volume 109 (1958) no. 1, pp. 10-21 | MR | Zbl

[36] Ronald C. Davidson Physics of Nonneutral Plasmas, Imperial College Press; World Scientific, 2001 | DOI

[37] Francis Filbet; Luis Miguel Miguel Rodrigues Asymptotically stable particle-in-cell methods for the Vlasov–Poisson system with a strong external magnetic field, Mathematics, Volume 54 (2016) no. 2, pp. 1120-1146 | MR | Zbl

[38] Philippe Chartier; Nicolas Crouseilles; Mohammed Lemou; Florian Méhats; Xiaofei Zhao Uniformly accurate methods for three dimensional Vlasov equations under strong magnetic field with varying direction, SIAM J. Sci. Comput., Volume 42 (2020) no. 2, p. B520-B547 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy