Comptes Rendus
Network element methods for linear elasticity
Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 331-356.

We explain how to derive a network element for the linear elasticity problem. After presenting sufficient conditions on the network for the validity of a discrete Korn inequality, we also propose several variations of the presented method and in particular we explain how it can be used on meshes to derive schemes that remain stable while keeping the stencil as compact as possible. Numerical examples illustrate the good behavior of the method, in both the mesh-based and truly meshless contexts.

Nous expliquons comment contruire une méthode «  éléments de réseau  » pour le problème de l’élasticité linéaire. Après avoir présenté des conditions suffisantes sur le réseau de discrétisation pour qu’une inégalité de Korn discrète soit satisfaite, nous détaillons plusieurs variantes de la méthode proposée et en particulier nous expliquons comment elle permet aussi d’obtenir des schémas basés sur des maillages qui demeurent stables tout en maintenant le stencil aussi compact que possible. Nous illustrons le bon comportement de la méthode à la fois sur maillage et dans le cas complètement sans maillage.

Received:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.231
Keywords: Meshless methods, Linear elasticity, Variational methods
Mot clés : Méthode sans maillage, Élasticité linéaire, Méthodes variationnelles

Julien Coatléven 1

1 IFP Énergies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_S1_331_0,
     author = {Julien Coatl\'even},
     title = {Network element methods for linear elasticity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {331--356},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S1},
     year = {2023},
     doi = {10.5802/crmeca.231},
     language = {en},
}
TY  - JOUR
AU  - Julien Coatléven
TI  - Network element methods for linear elasticity
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 331
EP  - 356
VL  - 351
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.231
LA  - en
ID  - CRMECA_2023__351_S1_331_0
ER  - 
%0 Journal Article
%A Julien Coatléven
%T Network element methods for linear elasticity
%J Comptes Rendus. Mécanique
%D 2023
%P 331-356
%V 351
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.231
%G en
%F CRMECA_2023__351_S1_331_0
Julien Coatléven. Network element methods for linear elasticity. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 331-356. doi : 10.5802/crmeca.231. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.231/

[1] R. Glowinski; T.-W. Pan; J. Périaux A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., Volume 111 (1994) no. 3–4, pp. 283-303 | DOI | MR

[2] V. Girault; R. Glowinski Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan. J. Ind. Appl. Math., Volume 12 (1995) no. 3, pp. 487-514 | DOI | MR | Zbl

[3] L. Lucy A numerical approach to the testing of the fission hypothesis, Astron. J., Volume 82 (1977), pp. 1013-1024 | DOI

[4] R. Gingold; J. Monaghan Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., Volume 181 (1977), pp. 375-389 | DOI | Zbl

[5] W. Liu; S. Jun; Y. Zhang Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, Volume 20 (1995), pp. 1081-1106 | DOI | MR | Zbl

[6] P. Jensen Finite difference techniques for variable grids, Comput. Struct., Volume 2 (1972), pp. 17-29 | DOI

[7] J. Melenk On Approximation in Meshless Methods, Springer, Berlin, Heidelberg, 2005, pp. 65-141

[8] E. Oñate; S. Idelsohn; O. Zienkiewicz; R. Taylor A finite point method in computational mechanics, Applications to convective transport and fluid flow, Int. J. Numer. Methods Eng., Volume 39 (1996), pp. 3839-3866 | DOI | MR | Zbl

[9] R. Trobec; G. Kosec Parallel Scientific Computing: Theory, Algorithms, and Applications of Mesh Based and Meshless Methods, Springer, Cham, 2015 | DOI

[10] R. Hardy Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., Volume 76 (1971), pp. 1905-1915 | DOI

[11] R. Hardy Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988, Comput. Math. Appl., Volume 19 (1990), pp. 163-208 | DOI | MR | Zbl

[12] C. Franke; R. Schaback Solving partial differential equations by collocation using radial basis functions, Appl. Math. Comput., Volume 93 (1998), pp. 73-82 | DOI | MR | Zbl

[13] B. Nayroles; G. Touzot; P. Villon Generalizing the finite element method: Diffuse approximation and diffuse elements, Comput. Mech., Volume 10 (1992), pp. 307-318 | DOI | MR | Zbl

[14] T. Belytschko; Y. Lu; L. Gu Element-free Galerkin methods, Int. J. Numer. Methods Eng., Volume 37 (1994), pp. 229-256 | DOI | MR | Zbl

[15] Y. Lu; T. Belytschko; L. Gu A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Eng., Volume 113 (1994), pp. 397-414 | DOI | MR | Zbl

[16] J. Melenk; I. Babuška The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Eng., Volume 139 (1996) no. 1–4, pp. 289-314 | DOI | MR | Zbl

[17] J. Melenk; I. Babuška The partition of unity method, Int. J. Numer. Methods Eng., Volume 40 (1997), pp. 727-758 | MR | Zbl

[18] S. Atluri; T. Zhu A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics, Comput. Mech., Volume 22 (1998) no. 2, pp. 117-127 | DOI | MR | Zbl

[19] S. Atluri; S. Shen The meshless local Petrov–Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods, Comput. Model Eng. Sci., Volume 3 (2002) no. 1, pp. 11-51 | MR | Zbl

[20] J.-S. Chen; M. Hillman; S.-W. Chi Meshfree methods: progress made after 20 years, J. Eng. Mech., Volume 143 (2017) no. 4, 04017001

[21] J. Coatléven Principles of a network element method, J. Comput. Phys., Volume 433 (2021), 110197 | DOI | MR | Zbl

[22] A. Katz; A. Jameson A meshless volume scheme, Proceedings of 19th AIAA Computational Fluid Dynamics, Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics, 2009, pp. 2009-3534

[23] O. Diyankov Uncertain grid method for numerical solution of PDEs (2008) (Technical report)

[24] E. K. yu Chiu; Q. Wang; R. Hu; A. Jameson A conservative mesh-free scheme and generalized framework for conservation laws, SIAM J. Sci. Comput., Volume 34 (2012) no. 6, pp. 2896-2916 | MR | Zbl

[25] A. Katz; A. Jameson Edge-based meshless methods for compressible viscous flow with applications to overset grids, Proceedings of the 38th Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2008 | DOI

[26] N. Trask; M. Perego; P. Bochev A high-order staggered meshless method for elliptic problems, SIAM J. Sci. Comput., Volume 39 (2017) no. 2, pp. 479-502 | DOI | MR | Zbl

[27] N. Trask; P. Bochev; M. Perego A conservative, consistent, and scalable mesh-free mimetic method, J. Comput. Phys., Volume 409 (2020), 109187 | DOI | Zbl

[28] J. Coatléven A network element method for heterogeneous and anisotropic diffusion-reaction problems, J. Comput. Phys., Volume 470 (2022), 111597 | DOI | MR | Zbl

[29] J. Coatléven A conservative network element method for diffusion-reaction problems, ESAIM Math. Model. Numer. Anal., Volume 57 (2023) no. 4, pp. 2007-2040 | DOI | MR | Zbl

[30] J. Coatléven Basic convergence theory for the network element method, ESAIM Math. Model. Numer. Anal., Volume 55 (2021) no. 5, pp. 2503-2533 | DOI | MR | Zbl

[31] J. Coatléven On network and geometry generation for the network element method, 2022 (preprint)

[32] L. B. da Veiga; F. Brezzi; A. Cangiani; G. Manzini; L. Marini; A. Russo Basic principles of virtual element methods, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 1, pp. 199-214 | MR | Zbl

[33] L. B. da Veiga; F. Brezzi; L. D. Marini Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., Volume 51 (2013) no. 2, pp. 794-812 | DOI | MR | Zbl

[34] D. A. Di Pietro; R. Eymard; S. Lemaire; R. Masson Hybrid finite volume discretization of linear elasticity models on general meshes, Finite Vol. for Complex App. VI Problems & Perspectives. Springer Proceedings in Mathematics, Volume 4, Springer, Berlin, Heidelberg, 2011 | MR | Zbl

[35] M. Botti; D. Di Pietro; A. Guglielmana A low-order nonconforming method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Eng., Volume 354 (2019), pp. 96-118 | DOI | MR | Zbl

[36] S. Lemaire Discrétisations non-conformes d’un modèle poromécanique sur maillages généraux, Phd thesis, Univeristé Paris-Est (2013)

[37] B. Mavrič; B. Šarler Local radial basis function collocation method for linear thermoelasticity in two dimensions, Int J. Numer. Method Heat Fluid Flow, Volume 25 (2015), pp. 1488-1510 | DOI | MR | Zbl

[38] J. Slak; G. Kosec Refined meshless local strong form solution of Cauchy–Navier equation on an irregular domain, Eng. Anal. Boundary Elem., Volume 100 (2019), pp. 3-13 | DOI | MR | Zbl

[39] J. Slak; G. Kosec Adaptive radial basis function-generated finite differences method for contact problems, Int. J. Numer. Method Eng., Volume 119 (2019) no. 7, pp. 661-686 | DOI | MR

[40] G. Kosec; J. Slak; M. Depolli; R. Trobec; K. Pereira; S. Tomar; T. Jacquemin; S. Bordas; M. A. Wahab Weak and strong form meshless methods for linear elastic problem under fretting contact conditions, Tribol. Int., Volume 138 (2019), pp. 392-402 | DOI

[41] T. Oliveira; W. Vélez; E. Santana; T. Araújo; F. Mendonça; A. Portela A local mesh free method for linear elasticity and fracture mechanics, Eng. Anal. Bound. Elem., Volume 101 (2019), pp. 221-242 | DOI | MR | Zbl

[42] L. Sang-Ho; Y. Young-Cheol Meshfree point collocation method for elasticity and crack problems, Int. J. Numer. Methods Eng., Volume 61 (2004), pp. 22-48 | Zbl

[43] V. Nguyen; M. Duflot Meshless methods: a review and computer implementation aspects, Math. Comput. Sim., Volume 79 (2008) no. 3, pp. 763-813 | DOI | MR | Zbl

[44] W. McLean Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2000

[45] S. C. Brenner Korn’s inequalities for piecewise H 1 vector fields, Math. Comput., Volume 73 (2004) no. 247, pp. 1067-1087 | DOI | MR | Zbl

[46] R. Eymard; C. Guichard; R. Herbin Small-stencil 3D schemes for diffusive flows in porous media, ESAIM Math. Model. Numer. Anal., Volume 46 (2011) no. 2, pp. 265-290 | DOI | MR | Zbl

[47] J. Coatléven A virtual volume method for heterogeneous and anisotropic diffusion-reaction problems on general meshes, ESAIM Math. Model. Numer. Anal., Volume 51 (2017), pp. 797-824 | DOI | Numdam | MR | Zbl

[48] R. Eymard; T. Gallouët; R. Herbin Finite volume methods, Techniques of Scientific Computing Part III (P. G. Ciarlet; J.-L. Lions, eds.) (Handbook of Numerical Analysis), North-Holland, Amsterdam, 2000, pp. 713-1020

[49] D. A. Di Pietro; A. Ern Mathematical Aspects of Discontinuous Galerkin Methods, Springer, Berlin, Heidelberg, 2012 | DOI

[50] J. Droniou; R. Eymard; T. Gallouët; C. Guichard; R. Herbin The Gradient Discretisation Method, Springer, Cham, 2018 | DOI

[51] E. Stein Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970

[52] J. Slak; G. Kosec On generation of node distributions for meshless PDE discretizations, SIAM J. Sci. Comput., Volume 41 (2019) no. 5, p. A3202-A3229 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy