Comptes Rendus
An adaptive least-squares algorithm for the elliptic Monge–Ampère equation
Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 277-292.

We address the numerical solution of the Dirichlet problem for the two-dimensional elliptic Monge–Ampère equation using a least-squares/relaxation approach. The relaxation algorithm allows the decoupling of the differential operators from the nonlinearities of the equation, within a splitting approach. The approximation relies on mixed low order finite element methods with regularization techniques. In order to account for data singularities in non-smooth cases, we introduce an adaptive mesh refinement technique. The error indicator is based an independent formulation of the Monge–Ampère equation under divergence form, which allows to explicit a residual term. We show that the error is bounded from above by an a posteriori error indicator plus an extra term that remains to be estimated. This indicator is then used within the existing least-squares framework. The results of numerical experiments support the convergence of our relaxation method to a convex classical solution, if such a solution exists. Otherwise they support convergence to a generalized solution in a least-squares sense. Adaptive mesh refinement proves to be efficient, robust, and accurate to tackle test cases with singularities.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.222
Mots clés : Fully nonlinear PDE, Monge–Ampère equation, Least-squares algorithm, Mixed finite elements, Adaptive mesh refinement, Non-smooth problems
Alexandre Caboussat 1 ; Dimitrios Gourzoulidis 1, 2 ; Marco Picasso 2

1 Geneva School of Business Administration (HEG-GE), University of Applied Sciences and Arts Western Switzerland (HES-SO), 1227 Carouge, Geneva, Switzerland
2 Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1018 Lausanne, Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S1_277_0,
     author = {Alexandre Caboussat and Dimitrios Gourzoulidis and Marco Picasso},
     title = {An adaptive least-squares algorithm for the elliptic {Monge{\textendash}Amp\`ere} equation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {277--292},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S1},
     year = {2023},
     doi = {10.5802/crmeca.222},
     language = {en},
}
TY  - JOUR
AU  - Alexandre Caboussat
AU  - Dimitrios Gourzoulidis
AU  - Marco Picasso
TI  - An adaptive least-squares algorithm for the elliptic Monge–Ampère equation
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 277
EP  - 292
VL  - 351
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.222
LA  - en
ID  - CRMECA_2023__351_S1_277_0
ER  - 
%0 Journal Article
%A Alexandre Caboussat
%A Dimitrios Gourzoulidis
%A Marco Picasso
%T An adaptive least-squares algorithm for the elliptic Monge–Ampère equation
%J Comptes Rendus. Mécanique
%D 2023
%P 277-292
%V 351
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.222
%G en
%F CRMECA_2023__351_S1_277_0
Alexandre Caboussat; Dimitrios Gourzoulidis; Marco Picasso. An adaptive least-squares algorithm for the elliptic Monge–Ampère equation. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 277-292. doi : 10.5802/crmeca.222. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.222/

[1] L. A. Caffarelli; X. Cabré Fully Nonlinear Elliptic Equations, Colloquium Publications, 43, American Mathematical Society, 1995 | Zbl

[2] J.-D. Benamou; B. D. Froese; A. M. Oberman Numerical solution of the optimal transportation problem using the Monge–Ampère equation, J. Comput. Phys., Volume 49 (2014) no. 4, pp. 107-126 | DOI | Zbl

[3] B. Engquist; B. D. Froese; Y. Yang Optimal transport for seismic full waveform inversion, Commun. Math. Sci., Volume 14 (2016) no. 8, pp. 2309-2330 | DOI | MR | Zbl

[4] A. Caboussat; R. Glowinski; D. C. Sorensen A Least-Squares Method for the Numerical Solution of the Dirichlet Problem for the Elliptic Monge–Ampère Equation in Dimension Two, ESAIM, Control Optim. Calc. Var., Volume 19 (2013) no. 3, pp. 780-810 | DOI | Numdam | Zbl

[5] X. Feng; M. Neilan; R. Glowinski Recent Developments in Numerical Methods for Fully Nonlinear 2nd Order PDEs, SIAM Rev., Volume 55 (2013) no. 2, pp. 205-267 | DOI | Zbl

[6] A. D. Aleksandrov Uniqueness conditions and estimates for the solution of the Dirichlet problem, Transl., Ser. 2, Am. Math. Soc., Volume 68 (1968), pp. 89-119 | Zbl

[7] H. Ishii; P.-L. Lions Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differ. Equations, Volume 83 (1990) no. 1, pp. 26-78 | DOI | MR | Zbl

[8] A. M. Oberman Wide stencil finite difference schemes for the elliptic Monge–Ampère equations and functions of the eigenvalues of the Hessian, Discrete Contin. Dyn. Syst., Ser. B, Volume 10 (2008) no. 1, pp. 221-238 | Zbl

[9] A. Caboussat; R. Glowinski; D. Gourzoulidis A least-squares/relaxation method for the numerical solution of the three-dimensional elliptic Monge–Ampère equation, J. Sci. Comput., Volume 77 (2018) no. 1, pp. 53-78 | DOI | Zbl

[10] I. Babuska; W. C. Rheinboldt A posteriori error estimates for the finite element method, Int. J. Numer. Methods Eng., Volume 12 (1978) no. 10, pp. 1597-1615 | DOI | Zbl

[11] R. Verfürth A review of a posteriori error estimation and adaptive mesh-refinement techniques, Advances in numerical mathematics, John Wiley & Sons, Chichester, 1996 | Zbl

[12] N. R. Iyer A posteriori error estimation and adaptive mesh refinement for reliable finite element solutions, Current Science, Volume 77 (1999) no. 10, pp. 1319-1324

[13] R. Verfürth A Posteriori Error Estimation Techniques for Finite Element Methods, Numerical Mathematics and Scientific Computation, Oxford University Press, 2013 | DOI | Zbl

[14] G. Akrivis; C. Makridakis; R. H. Nochetto Optimal order a posteriori error estimates for a class of Runge–Kutta and Galerkin methods, Numer. Math., Volume 114 (2009) no. 1, pp. 133-160 | DOI | MR | Zbl

[15] R. Verfürth A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comput., Volume 62 (1994) no. 206, pp. 445-475 | DOI | MR | Zbl

[16] W. Dorfler A Convergent Adaptive Algorithm for Poisson’s Equation, SIAM J. Numer. Anal., Volume 33 (1996) no. 3, pp. 1106-1124 | DOI | MR | Zbl

[17] W. Bangerth; R. Rannacher Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics, ETH Zürich, Springer, 2003 | DOI | Zbl

[18] O. Lakkis; T. Pryer A finite element method for nonlinear elliptic problems, SIAM J. Sci. Comput., Volume 35 (2013) no. 4, p. A2025-A2045 | DOI | MR | Zbl

[19] B. H. Froese; T. Salvador Higher-Order Adaptive Finite Difference Methods for Fully Nonlinear Elliptic Equations, J. Sci. Comput., Volume 75 (2018) no. 3, pp. 1282-1306 | MR | Zbl

[20] A. Laadhari; P. Saramito; C. Misbah An adaptive finite element method for the modeling of the equilibrium of red blood cells, Int. J. Numer. Methods Fluids, Volume 80 (2015), pp. 397-428 | DOI | MR

[21] S. C. Brenner; M. Neilan Finite element approximations of the three dimensional Monge–Ampère equation, M2AN, Math. Model. Numer. Anal., Volume 46 (2012) no. 5, pp. 979-1001 | DOI | Numdam | Zbl

[22] S. C. Brenner; T. Gudi; M. Neilan; L.-Y. Sung C 0 penalty methods for the fully nonlinear Monge–Ampère equation, Math. Comput., Volume 80 (2011) no. 276, pp. 1979-1995 | DOI | Zbl

[23] H. Liu; R. Glowinski; S. Leung; J. Qian A finite element/operator-splitting method for the numerical solution of the three dimensional Monge–Ampère Equation, J. Sci. Comput., Volume 81 (2019) no. 3, pp. 2271-2302 | DOI | Zbl

[24] R. Glowinski Finite Element Methods For Incompressible Viscous Flow, Numerical methods for fluids (Part 3) (Handbook of Numerical Analysis), Volume 9, Elsevier, 2003, pp. 3-1176 | DOI | Zbl

[25] R. Glowinski Numerical Methods for Nonlinear Variational Problems, Scientific Computation, Springer, 2008 | Zbl

[26] D. N. Arnold Mixed finite element methods for elliptic problems, Comput. Methods Appl. Mech. Eng., Volume 82 (1990) no. 1-3, pp. 281-300 | DOI | MR | Zbl

[27] D. Boffi; F. Brezzi; M. Fortin Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | DOI | Zbl

[28] G. Awanou; H. Li Error Analysis of a Mixed Finite Element Method for the Monge–Ampère Equation, Int. J. Numer. Anal. Model., Volume 11 (2014) no. 4, pp. 745-761 | Zbl

[29] X. Feng; M. Neilan Mixed Finite Element Methods for the Fully Nonlinear Monge–Ampère Equation Based on the Vanishing Moment Method, SIAM J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1226-1250 | DOI | Zbl

[30] A. N. Tychonoff The regularization of incorrectly posed problems, Dokl. Akad. Nauk SSSR, Volume 153 (1963), pp. 49-52 | Zbl

[31] M. Picasso; F. Alauzet; H. Borouchaki; P.-L. George A Numerical Study of Some Hessian Recovery Techniques on Isotropic and Anisotropic Meshes, SIAM J. Sci. Comput., Volume 33 (2011) no. 3, pp. 1058-1076 | DOI | MR | Zbl

[32] E. H. Georgoulis; P. Houston; J. Virtanen An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems, IMA J. Numer. Anal., Volume 31 (2011) no. 1, pp. 281-298 | DOI | MR | Zbl

[33] A. Charbonneau; K. Dossou; R. Pierre A residual-based a posteriori error estimator for the Ciarlet–Raviart formulation of the first biharmonic problem, Numer. Methods Partial Differ. Equations, Volume 13 (1997) no. 1, pp. 93-111 | DOI | MR | Zbl

[34] P. Laug; H. Borouchaki The BL2D Mesh Generator: Beginner’s Guide, User’s and Programmer’s Manual (1996) no. T-0194 (https://hal.inria.fr/inria-00069977) (Technical report)

[35] E. J. Dean; R. Glowinski Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 13-16, pp. 1344-1386 | DOI | Zbl

[36] C. Dapogny; C. Dobrzynski; P. Frey Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, J. Comput. Phys., Volume 262 (2014), pp. 358-378 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Evaluating a distance function

Rémi Abgrall

C. R. Méca (2023)


A finite element method for a two-dimensional Pucci equation

Susanne C. Brenner; Li-yeng Sung; Zhiyu Tan

C. R. Méca (2023)


Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach

Edward J. Dean; Roland Glowinski

C. R. Math (2004)