Comptes Rendus
Article de recherche
Large deflections of agglomerated carbon nanotubes reinforced sandwich cantilever beam partially embedded on foundation
[Grandes déflexions d’une poutre sandwich renforcée par des nanotubes de carbone agglomérés, partiellement encastrée sur une fondation]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 127-149.

Les grandes déflexions d’une poutre sandwich renforcée par des nanotubes de carbone (CNTs) partiellement encastrée sur une fondation de Pasternak sont étudiées en tenant compte de l’influence de l’agglomération des CNTs. La poutre sandwich est composée d’un noyau homogène et de couches externes composites, dont les modules effectifs sont estimés à l’aide du modèle d’Eshelby–Mori–Tanaka.

L’équation d’équilibre non linéaire est construite en utilisant un élément de poutre non linéaire déformable en cisaillement de premier ordre, puis résolue à l’aide d’une procédure itérative basée sur l’algorithme de Newton–Raphson.

Les résultats révèlent que l’effet de l’élancement sur les grandes déflexions dépend du degré d’agglomération des CNTs, et cet effet devient plus important lorsque le degré d’agglomération est élevé. Les influences de la fraction volumique des CNTs, du degré d’agglomération des CNTs et des paramètres de la fondation sur les grandes déflexions sont étudiées en détail. L’impact de la configuration sandwich et des porosités sur le comportement de la poutre sandwich est également examiné et discuté.

The large deflections of a carbon nanotubes (CNTs) reinforced sandwich cantilever beam partially embedded on Pasternak foundation are studied considering the influence of CNTs agglomeration. The sandwich beam is composed of a homogeneous core and composite face layers with effective moduli being estimated by Eshelby–Mori–Tanaka model. The nonlinear equilibrium equation is constructed using a first-order shear deformable nonlinear beam element and solved by the Newton–Raphson based iterative procedure. The result reveals that the effect of slenderness ratio on the large deflections is dependent on the degree of CNT agglomeration, and this effect is more significant when the agglomeration degree is more severe. The effects of the CNT volume fraction, the degree of CNTs agglomeration and the foundation parameters on the large deflections are studied in detail. The influence of the sandwich configuration and the porosities on the behavior of the sandwich beam is also examined and discussed.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.274
Keywords: Sandwich beam, Carbon nanotubes, Agglomeration, Partial foundation embedment, Large deflection
Mots-clés : Poutre sandwich, Nanotubes de carbone, Agglomération, Encastrement partiel dans une fondation, Grande déflexion

Thi Thu Hoai Bui 1, 2 ; Thi Thu Huong Tran 3 ; Vu Nam Pham 4 ; Dinh Kien  Nguyen 5

1 Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam
2 Faculty of Vehicle and Energy Engineering, Phenikaa University, Ha Dong, Hanoi 12116, Vietnam
3 School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
4 Thuyloi University, 175 Son Tay, Dong Da, Hanoi, Vietnam
5 Institute of Mechanics, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_127_0,
     author = {Thi Thu Hoai Bui and Thi Thu Huong Tran and Vu Nam Pham and Dinh~Kien~ Nguyen},
     title = {Large deflections of agglomerated carbon nanotubes reinforced sandwich cantilever beam partially embedded on foundation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {127--149},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.274},
     language = {en},
}
TY  - JOUR
AU  - Thi Thu Hoai Bui
AU  - Thi Thu Huong Tran
AU  - Vu Nam Pham
AU  - Dinh Kien  Nguyen
TI  - Large deflections of agglomerated carbon nanotubes reinforced sandwich cantilever beam partially embedded on foundation
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 127
EP  - 149
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.274
LA  - en
ID  - CRMECA_2025__353_G1_127_0
ER  - 
%0 Journal Article
%A Thi Thu Hoai Bui
%A Thi Thu Huong Tran
%A Vu Nam Pham
%A Dinh Kien  Nguyen
%T Large deflections of agglomerated carbon nanotubes reinforced sandwich cantilever beam partially embedded on foundation
%J Comptes Rendus. Mécanique
%D 2025
%P 127-149
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.274
%G en
%F CRMECA_2025__353_G1_127_0
Thi Thu Hoai Bui; Thi Thu Huong Tran; Vu Nam Pham; Dinh Kien  Nguyen. Large deflections of agglomerated carbon nanotubes reinforced sandwich cantilever beam partially embedded on foundation. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 127-149. doi : 10.5802/crmeca.274. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.274/

[1] Y. Saito; K. Hamaguchi; K. Hata et al. Conical beams from open nanotubes, Nature, Volume 389 (1997), pp. 554-555 | DOI

[2] E. T. Thostenson; Z. Ren; T. W. Chou Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., Volume 61 (2010), pp. 1899-1912 | DOI

[3] J. D. Fidelus; E. Wiesel; F. H. Gojny et al. Thermomechanical properties of randomly oriented carbon/epoxy nanocomposites, Composites A, Volume 36 (2005) no. 11, pp. 1555-1561 | DOI

[4] J. N. Coleman; U. Khan; W. J. Blau et al. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon, Volume 44 (2006) no. 9, pp. 1624-1652 | DOI

[5] K. M. Liew; Z. X. Lei; L. W. Zhang Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review, Compos. Struct., Volume 120 (2015), pp. 90-97 | DOI

[6] S. I. Yengejeh; S. A. Kazemi; A. Öchsner Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical, and experimental approaches, Comput. Mater. Sci., Volume 136 (2017), pp. 85-101 | DOI

[7] S. H. Shen Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., Volume 91 (2009), pp. 9-19 | DOI

[8] S. H. Shen; Z. H. Zhu Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations, Eur. J. Mech. A Solids, Volume 35 (2012), pp. 10-21 | DOI

[9] H. S. Shen; Y. Xiang Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., Volume 56 (2013), pp. 698-708 | DOI

[10] N. Wattanasakulpong; V. Ungbhakorn Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation, Comput. Mater. Sci., Volume 71 (2013), pp. 201-208 | DOI

[11] K. Mayandi; P. Jeyaraj Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load, Proc. Inst. Mech. Eng. L, Volume 229 (2015), pp. 13-28 | DOI

[12] Z. X. Lei; K. M. Liew; J. L. Yu Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method, Comput. Methods Appl. Mech. Eng., Volume 256 (2013), pp. 189-199 | DOI

[13] L. W. Zhang; Z. X. Lei; K. M. Liew et al. Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels, Comput. Methods Appl. Mech. Eng., Volume 273 (2014), pp. 1-18 | DOI

[14] K. M. Liew; Z. X. Lei; J. L. Yu et al. Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach, Comput. Methods Appl. Mech. Eng., Volume 268 (2014), pp. 1-17 | DOI

[15] L. W. Zhang; K. M. Liew; J. N. Reddy Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression, Comput. Methods Appl. Mech. Eng., Volume 298 (2016), pp. 1-28 | DOI

[16] L. W. Zhang; K. M. Liew; Z. Jiang An element-free analysis of CNT-reinforced composite plates with column supports and elastically restrained edges under large deformation, Composites B, Volume 95 (2016), pp. 18-28 | DOI

[17] L. W. Zhang Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports, J. Model. Mech. Mater., Volume 1 (2017), 20160154 | DOI

[18] S. Zghal; A. Frikha; F. Dammak Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes, Appl. Math. Mech., Volume 41 (2020), pp. 1227-1250 | DOI

[19] S. Natarajan; M. Haboussi; G. Manickam Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets, Compos. Struct., Volume 13 (2014), pp. 197-207 | DOI

[20] H. Wu; S. Kitipornchai; J. Yang Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, Int. J. Struct. Stab. Dynam., Volume 15 (2015) no. 7, pp. 1540011-1540027 | DOI

[21] A. Sankar; S. El-Borgicd; T. B. Zinebef et al. Dynamic snap-through buckling of CNT reinforced composite sandwich spherical caps, Composites B, Volume 99 (2016), pp. 472-482 | DOI

[22] A. Sankar; S. El-Borgicd; M. Ganapathia Parametric instability of thick doubly curved CNT reinforced composite sandwich panels under in-plane periodic loads using higher-order shear deformation theory, J. Vib. Control., Volume 24 (2018) no. 10, pp. 1927-1950 | DOI

[23] K. Mehar; S. K. Panda; B. K. Patle Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach, Polym. Compos., Volume 39 (2018) no. 10, pp. 3792-3809 | DOI

[24] S. Kamarian; M. Bodaghi; R. B. Isfahani et al. Thermal buckling analysis of sandwich plates with soft core and CNT-Reinforced composite face sheets, J. Sand. Struct. Mater., Volume 23 (2021) no. 8, pp. 3606-3644 | DOI

[25] M. S. P. Shaffer; A. H. Windle Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites, Adv. Mater., Volume 11 (1999) no. 11, pp. 937-941 | DOI

[26] B. Vigolo; A. Penicaud; C. Coulon et al. Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, Volume 290 (2000), pp. 1331-1334 | DOI

[27] D. L. Shi; X. Q. Feng; Y. Y. Huang et al. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites, J. Eng. Mater. Technol., Volume 126 (2004) no. 3, pp. 250-257 | DOI

[28] M. H. Yas; M. Heshmati Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Appl. Math. Model., Volume 36 (2012) no. 4, pp. 1371-1394 | DOI

[29] M. Heshmati; M. H. Yas Free vibration analysis of functionally graded CNT reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach, J. Mech. Sci. Technol., Volume 27 (2013), pp. 3403-3408 | DOI

[30] M. Heshmati; M. H. Yas; F. Daneshmand A comprehensive study on the vibrational behavior of CNT-reinforced composite beams, Compos. Struct., Volume 125 (2015), pp. 434-448 | DOI

[31] S. J. Mehrabadi; B. S. Aragh Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes, Thin-Walled Struct., Volume 80 (2014), pp. 130-141 | DOI

[32] F. Tornabene; N. Fantuzzi; M. Bacciocchi Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes, Composites B, Volume 115 (2017), pp. 449-476 | DOI

[33] R. Kolahchi; A. Cheraghbak Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method, Nonlinear Dyn., Volume 90 (2017) no. 1, pp. 479-492 | DOI

[34] B. Safaei; R. Moradi-Dastjerdi; K. Behdinan et al. Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers, Aerosp. Sci. Technol., Volume 91 (2019), pp. 75-185 | DOI

[35] F. Ebrahimi; A. Dabbagh; A. Rastgoo Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles, Mech. Based Des. Struct., Volume 49 (2019), pp. 487-510 | DOI

[36] A. Dabbagh; A. Rastgoo; F. Ebrahimi Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory, Eng. Comput., Volume 37 (2021), pp. 2225-2244 | DOI

[37] M. K. Kassa; R. Selvaraj; H. D. Wube et al. Investigation of the bending response of carbon nanotubes reinforced laminated tapered spherical composite panels with the influence of waviness, interphase and agglomeration, Mech. Based Des. Struct., Volume 51 (2021), pp. 5902-5924 | DOI

[38] H. Daghigh; V. Daghigh; A. Milani et al. Nonlocal bending and buckling of agglomerated CNT-reinforced composite nanoplates, Composites B, Volume 183 (2020), 107716 | DOI

[39] J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A. Math. Phys. Sci., Volume 241 (1957), pp. 376-396 | DOI

[40] T. Mori; K. Tanaka Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., Volume 21 (1973) no. 5, pp. 571-574 | DOI

[41] C. Pacoste; A. Eriksson Beam elements in instability problems, Comput. Methods Appl. Mech. Eng., Volume 144 (1997), pp. 163-197 | DOI

[42] C. A. Almeida; J. C. R. Albino; I. F. M. Menezes et al. Geometric nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation, Mech. Res. Commun., Volume 38 (2011), pp. 553-559 | DOI

[43] D. K. Nguyen; T. T. H. Bui; T. T. H. Tran; S. Alexandrov Large deflections of functionally graded sandwich beams with influence of homogenization schemes, Arch. Appl. Mech., Volume 92 (2022), pp. 1757-1775 | DOI

[44] D. K. Nguyen Post-buckling behavior of beams on two-parameter elastic foundation, Int. J. Struct. Stab. Dyn., Volume 4 (2004), pp. 21-43 | DOI

[45] M. A. Crisfield Non-linear Finite Element Analysis of Solids and Structures. Vol 1: Essentials, Wiley, Chichester, 1991

[46] Y. A. Kang; X. F. Li Large deflections of a non-linear cantilever functionally graded beam, J. Reinf. Plast. Compos., Volume 29 (2010), pp. 1761-1774 | DOI

[47] P. K. Masjedi; A. Maher; P. M. Weaver Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation, Appl. Math. Model., Volume 76 (2019), pp. 938-957 | DOI

Cité par Sources :

Commentaires - Politique