[Grandes déflexions d’une poutre sandwich renforcée par des nanotubes de carbone agglomérés, partiellement encastrée sur une fondation]
Les grandes déflexions d’une poutre sandwich renforcée par des nanotubes de carbone (CNTs) partiellement encastrée sur une fondation de Pasternak sont étudiées en tenant compte de l’influence de l’agglomération des CNTs. La poutre sandwich est composée d’un noyau homogène et de couches externes composites, dont les modules effectifs sont estimés à l’aide du modèle d’Eshelby–Mori–Tanaka.
L’équation d’équilibre non linéaire est construite en utilisant un élément de poutre non linéaire déformable en cisaillement de premier ordre, puis résolue à l’aide d’une procédure itérative basée sur l’algorithme de Newton–Raphson.
Les résultats révèlent que l’effet de l’élancement sur les grandes déflexions dépend du degré d’agglomération des CNTs, et cet effet devient plus important lorsque le degré d’agglomération est élevé. Les influences de la fraction volumique des CNTs, du degré d’agglomération des CNTs et des paramètres de la fondation sur les grandes déflexions sont étudiées en détail. L’impact de la configuration sandwich et des porosités sur le comportement de la poutre sandwich est également examiné et discuté.
The large deflections of a carbon nanotubes (CNTs) reinforced sandwich cantilever beam partially embedded on Pasternak foundation are studied considering the influence of CNTs agglomeration. The sandwich beam is composed of a homogeneous core and composite face layers with effective moduli being estimated by Eshelby–Mori–Tanaka model. The nonlinear equilibrium equation is constructed using a first-order shear deformable nonlinear beam element and solved by the Newton–Raphson based iterative procedure. The result reveals that the effect of slenderness ratio on the large deflections is dependent on the degree of CNT agglomeration, and this effect is more significant when the agglomeration degree is more severe. The effects of the CNT volume fraction, the degree of CNTs agglomeration and the foundation parameters on the large deflections are studied in detail. The influence of the sandwich configuration and the porosities on the behavior of the sandwich beam is also examined and discussed.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Poutre sandwich, Nanotubes de carbone, Agglomération, Encastrement partiel dans une fondation, Grande déflexion
Thi Thu Hoai Bui 1, 2 ; Thi Thu Huong Tran 3 ; Vu Nam Pham 4 ; Dinh Kien Nguyen 5
@article{CRMECA_2025__353_G1_127_0, author = {Thi Thu Hoai Bui and Thi Thu Huong Tran and Vu Nam Pham and Dinh~Kien~ Nguyen}, title = {Large deflections of agglomerated carbon nanotubes reinforced sandwich cantilever beam partially embedded on foundation}, journal = {Comptes Rendus. M\'ecanique}, pages = {127--149}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.274}, language = {en}, }
TY - JOUR AU - Thi Thu Hoai Bui AU - Thi Thu Huong Tran AU - Vu Nam Pham AU - Dinh Kien Nguyen TI - Large deflections of agglomerated carbon nanotubes reinforced sandwich cantilever beam partially embedded on foundation JO - Comptes Rendus. Mécanique PY - 2025 SP - 127 EP - 149 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.274 LA - en ID - CRMECA_2025__353_G1_127_0 ER -
%0 Journal Article %A Thi Thu Hoai Bui %A Thi Thu Huong Tran %A Vu Nam Pham %A Dinh Kien Nguyen %T Large deflections of agglomerated carbon nanotubes reinforced sandwich cantilever beam partially embedded on foundation %J Comptes Rendus. Mécanique %D 2025 %P 127-149 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.274 %G en %F CRMECA_2025__353_G1_127_0
Thi Thu Hoai Bui; Thi Thu Huong Tran; Vu Nam Pham; Dinh Kien Nguyen. Large deflections of agglomerated carbon nanotubes reinforced sandwich cantilever beam partially embedded on foundation. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 127-149. doi : 10.5802/crmeca.274. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.274/
[1] et al. Conical beams from open nanotubes, Nature, Volume 389 (1997), pp. 554-555 | DOI
[2] Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., Volume 61 (2010), pp. 1899-1912 | DOI
[3] et al. Thermomechanical properties of randomly oriented carbon/epoxy nanocomposites, Composites A, Volume 36 (2005) no. 11, pp. 1555-1561 | DOI
[4] et al. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon, Volume 44 (2006) no. 9, pp. 1624-1652 | DOI
[5] Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review, Compos. Struct., Volume 120 (2015), pp. 90-97 | DOI
[6] Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical, and experimental approaches, Comput. Mater. Sci., Volume 136 (2017), pp. 85-101 | DOI
[7] Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., Volume 91 (2009), pp. 9-19 | DOI
[8] Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations, Eur. J. Mech. A Solids, Volume 35 (2012), pp. 10-21 | DOI
[9] Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., Volume 56 (2013), pp. 698-708 | DOI
[10] Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation, Comput. Mater. Sci., Volume 71 (2013), pp. 201-208 | DOI
[11] Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load, Proc. Inst. Mech. Eng. L, Volume 229 (2015), pp. 13-28 | DOI
[12] Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method, Comput. Methods Appl. Mech. Eng., Volume 256 (2013), pp. 189-199 | DOI
[13] et al. Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels, Comput. Methods Appl. Mech. Eng., Volume 273 (2014), pp. 1-18 | DOI
[14] et al. Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach, Comput. Methods Appl. Mech. Eng., Volume 268 (2014), pp. 1-17 | DOI
[15] Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression, Comput. Methods Appl. Mech. Eng., Volume 298 (2016), pp. 1-28 | DOI
[16] An element-free analysis of CNT-reinforced composite plates with column supports and elastically restrained edges under large deformation, Composites B, Volume 95 (2016), pp. 18-28 | DOI
[17] Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports, J. Model. Mech. Mater., Volume 1 (2017), 20160154 | DOI
[18] Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes, Appl. Math. Mech., Volume 41 (2020), pp. 1227-1250 | DOI
[19] Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets, Compos. Struct., Volume 13 (2014), pp. 197-207 | DOI
[20] Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, Int. J. Struct. Stab. Dynam., Volume 15 (2015) no. 7, pp. 1540011-1540027 | DOI
[21] et al. Dynamic snap-through buckling of CNT reinforced composite sandwich spherical caps, Composites B, Volume 99 (2016), pp. 472-482 | DOI
[22] Parametric instability of thick doubly curved CNT reinforced composite sandwich panels under in-plane periodic loads using higher-order shear deformation theory, J. Vib. Control., Volume 24 (2018) no. 10, pp. 1927-1950 | DOI
[23] Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach, Polym. Compos., Volume 39 (2018) no. 10, pp. 3792-3809 | DOI
[24] et al. Thermal buckling analysis of sandwich plates with soft core and CNT-Reinforced composite face sheets, J. Sand. Struct. Mater., Volume 23 (2021) no. 8, pp. 3606-3644 | DOI
[25] Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites, Adv. Mater., Volume 11 (1999) no. 11, pp. 937-941 | DOI
[26] et al. Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, Volume 290 (2000), pp. 1331-1334 | DOI
[27] et al. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites, J. Eng. Mater. Technol., Volume 126 (2004) no. 3, pp. 250-257 | DOI
[28] Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Appl. Math. Model., Volume 36 (2012) no. 4, pp. 1371-1394 | DOI
[29] Free vibration analysis of functionally graded CNT reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach, J. Mech. Sci. Technol., Volume 27 (2013), pp. 3403-3408 | DOI
[30] A comprehensive study on the vibrational behavior of CNT-reinforced composite beams, Compos. Struct., Volume 125 (2015), pp. 434-448 | DOI
[31] Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes, Thin-Walled Struct., Volume 80 (2014), pp. 130-141 | DOI
[32] Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes, Composites B, Volume 115 (2017), pp. 449-476 | DOI
[33] Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method, Nonlinear Dyn., Volume 90 (2017) no. 1, pp. 479-492 | DOI
[34] et al. Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers, Aerosp. Sci. Technol., Volume 91 (2019), pp. 75-185 | DOI
[35] Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles, Mech. Based Des. Struct., Volume 49 (2019), pp. 487-510 | DOI
[36] Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory, Eng. Comput., Volume 37 (2021), pp. 2225-2244 | DOI
[37] et al. Investigation of the bending response of carbon nanotubes reinforced laminated tapered spherical composite panels with the influence of waviness, interphase and agglomeration, Mech. Based Des. Struct., Volume 51 (2021), pp. 5902-5924 | DOI
[38] et al. Nonlocal bending and buckling of agglomerated CNT-reinforced composite nanoplates, Composites B, Volume 183 (2020), 107716 | DOI
[39] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A. Math. Phys. Sci., Volume 241 (1957), pp. 376-396 | DOI
[40] Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., Volume 21 (1973) no. 5, pp. 571-574 | DOI
[41] Beam elements in instability problems, Comput. Methods Appl. Mech. Eng., Volume 144 (1997), pp. 163-197 | DOI
[42] et al. Geometric nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation, Mech. Res. Commun., Volume 38 (2011), pp. 553-559 | DOI
[43] Large deflections of functionally graded sandwich beams with influence of homogenization schemes, Arch. Appl. Mech., Volume 92 (2022), pp. 1757-1775 | DOI
[44] Post-buckling behavior of beams on two-parameter elastic foundation, Int. J. Struct. Stab. Dyn., Volume 4 (2004), pp. 21-43 | DOI
[45] Non-linear Finite Element Analysis of Solids and Structures. Vol 1: Essentials, Wiley, Chichester, 1991
[46] Large deflections of a non-linear cantilever functionally graded beam, J. Reinf. Plast. Compos., Volume 29 (2010), pp. 1761-1774 | DOI
[47] Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation, Appl. Math. Model., Volume 76 (2019), pp. 938-957 | DOI
Cité par Sources :
Commentaires - Politique