This paper aims at providing exact expressions for the mechanical fields induced by Laser Shock Peening and comparing them to their numerical estimations. We use a uniaxial strain field hypothesis with an elastic perfectly plastic behavior to derive the stress wave equation. An exact solution to this equation is given using the method of characteristics for a step time profile for the pressure loading, and numerically using finite differences schemes adapted for this hyperbolic equation. An additional residual stress modeling is used, providing the residual stress distribution assuming a planar infinite plate with a finite thickness. Results are presented for three loading pressures, each one corresponding to a different structure in the exact solution. The exact and numerical results present a good match, allowing either the use of the exact solution for an initial estimation of the mechanical fields, or to test the accuracy of other numerical methods.
Cet article vise à fournir des expressions exactes pour les champs mécaniques induits par le grenaillage laser et à les comparer à leurs estimations numériques. Nous utilisons une hypothèse de champ de déformation uniaxial avec un comportement élastique parfaitement plastique pour obtenir l’équation de l’onde de contrainte. Une solution exacte de cette équation est donnée en utilisant la méthode des caractéristiques pour un profil temporel de la charge de pression, et numériquement en utilisant des schémas de différences finies adaptés à cette équation hyperbolique. Une modélisation supplémentaire des contraintes résiduelles est utilisée, fournissant la distribution des contraintes résiduelles en supposant une plaque infinie plane avec une épaisseur finie. Les résultats sont présentés pour trois pressions de chargement, chacune correspondant à une structure différente dans la solution exacte. Les résultats exacts et numériques présentent une bonne concordance, ce qui permet soit d’utiliser la solution exacte pour une estimation initiale des champs mécaniques, soit de tester la précision d’autres méthodes numériques.
Revised:
Accepted:
Published online:
Mot clés : Grenaillage laser, Propagation d’ondes élasto-plastiques, Simulation numérique, Solution analytique, Déformations plastiques, Contraintes résiduelles
Lucas Lapostolle 1; Léo Morin 2; Katell Derrien 1; Laurent Berthe 1; Olivier Castelnau 1
@article{CRMECA_2023__351_G2_459_0, author = {Lucas Lapostolle and L\'eo Morin and Katell Derrien and Laurent Berthe and Olivier Castelnau}, title = {Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening}, journal = {Comptes Rendus. M\'ecanique}, pages = {459--484}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, year = {2023}, doi = {10.5802/crmeca.227}, language = {en}, }
TY - JOUR AU - Lucas Lapostolle AU - Léo Morin AU - Katell Derrien AU - Laurent Berthe AU - Olivier Castelnau TI - Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening JO - Comptes Rendus. Mécanique PY - 2023 SP - 459 EP - 484 VL - 351 PB - Académie des sciences, Paris DO - 10.5802/crmeca.227 LA - en ID - CRMECA_2023__351_G2_459_0 ER -
%0 Journal Article %A Lucas Lapostolle %A Léo Morin %A Katell Derrien %A Laurent Berthe %A Olivier Castelnau %T Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening %J Comptes Rendus. Mécanique %D 2023 %P 459-484 %V 351 %I Académie des sciences, Paris %R 10.5802/crmeca.227 %G en %F CRMECA_2023__351_G2_459_0
Lucas Lapostolle; Léo Morin; Katell Derrien; Laurent Berthe; Olivier Castelnau. Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 459-484. doi : 10.5802/crmeca.227. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.227/
[1] Laser Shock Peening Performance and Process Simulation, Woodhead Publishing Limited, Cambridge, UK, 2006
[2] Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour, Mater. Sci. Eng. A, Volume 210 (1996), pp. 102-113 | DOI
[3] Contraintes résiduelles induites par impact rapide. Application au choc laser, Phd thesis, Ecole Polytechnique (1991)
[4] Residual stresses induced by laser-shocks, J. Phys. IV, Volume 01 (1991), p. C3-487–C3–494 | DOI
[5] Finite element simulation of laser shock peening, Int. J. Fatigue, Volume 21 (1999), pp. 719-724 | DOI
[6] Simulation of laser peening for generation of a surface compressive stresses, 21e Congrès Français de Mécnique, 2013, p. 6
[7] FEM calculation of residual stresses induced by laser shock processing in stainless steels, Modell. Simul. Mater. Sci. Eng., Volume 15 (2007), pp. 205-221 | DOI
[8] FEM simulation of residual stresses induced by laser Peening, Eur. Phys. J. Appl. Phys., Volume 23 (2003), pp. 83-88 | DOI
[9] Numerical investigation of the effect of laser shock peening parameters on the residual stress and deformation response of 7075 aluminum alloy, Optik, Volume 243 (2021), 167446 | DOI
[10] Prediction and characterization of residual stresses from laser shock peening, Int. J. Fatigue, Volume 36 (2012), pp. 96-108 | DOI
[11] Modeling and simulation of laser shock waves in elasto-plastic 1D layered specimens, Int. J. Solids Struct., Volume 239-240 (2022), 111422 | DOI
[12] Modeling and simulation of laser shock waves in elasto-plastic polycrystalline microstructures, J. Mech. Phys. Solids, Volume 176 (2023), 105310 | DOI | MR
[13] Fast numerical estimation of residual stresses induced by laser shock peening, Eur. J. Mech. A/Solids, Volume 97 (2023), 104844 | DOI | MR
[14] Lax–Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic–plastic solids, J. Comput. Phys., Volume 346 (2017), pp. 369-388 | DOI | MR | Zbl
[15] Foundations of Stress Waves, Elsevier Science, Oxford, UK, 2007
[16] Unloading waves and unloading failures in structures under impact loading, Int. J. Impact Eng., Volume 30 (2004), pp. 889-900 | DOI
[17] The modelling of residual stresses due to surface peening using eigenstrain distributions, J. Strain Anal. Eng. Des., Volume 40 (2005), pp. 817-824 | DOI
[18] Etude de l’impact du grenaillage sur des composants mécaniques industriels à géométrie complexe, Phd thesis, Ecole Nationale Supérieure des Arts et Métiers (2018)
[19] Thermal Stress Analyses, Pergamon Press, Oxford, UK, 1965
[20] Contraintes résiduelles et déformations plastiques: Leurs relations mutuelles pour des pièces de géométrie simple, Matér. Tech., Volume 84 (1996), pp. 46-50 | DOI
[21] Evaluation of laser shock peening process parameters incorporating Almen strip deflections, Surf. Coat. Technol., Volume 434 (2022), 128158 | DOI
[22] Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK, 2002 | DOI
[23] A conservative eulerian numerical scheme for elastoplasticity and application to plate impact problems, Impact Comput. Sci. Eng., Volume 5 (1993), pp. 285-308 | DOI | MR | Zbl
[24] Modeling of multi-edge effects in the case of laser shock loadings applied on thin foils: Application for material characterization of aluminum alloys, J. Appl. Phys., Volume 131 (2022), 095902 | DOI
[25] Identification of constitutive equations at very high strain rates using shock wave produced by laser, Eur. J. Mech. - A/Solids, Volume 92 (2022), 104432 | DOI
[26] Investigation on the non-homogeneity of residual stress field induced by laser shock peening, Surf. Coat. Technol., Volume 203 (2009), pp. 3503-3508 | DOI
[27] FEM of residual stress and surface displacement of a single shot in high repetition laser shock peening on biodegradable magnesium implant, J. Mech. Sci. Technol., Volume 30 (2016), pp. 3265-3273 | DOI
[28] Eigenstrain modelling of residual stresses generated by laser shock peening, J. Mater. Process. Technol., Volume 211 (2011), pp. 1091-1101 | DOI
[29] Numerical modeling of laser-induced shock experiments for the development of the adhesion test for bonded composite materials, Compos. Struct., Volume 152 (2016), pp. 382-394 | DOI
[30] Etude numérique de l’influence d’hétérogénéités microstructurales sur les contraintes résiduelles induites par choc laser, Phd thesis, Arts et Métiers, Paris (2022)
[31] Laser shock peening of Ti-17 titanium alloy: Influence of process parameters, Mater. Sci. Eng. A, Volume 532 (2012), pp. 362-372 | DOI
[32] New methodology of dynamical material response of dissimilar FSWed Al alloy joint under high strain rate laser shock loading, Mater. Des., Volume 222 (2022), 111080 | DOI
[33] Analysis of laser shock waves and resulting surface deformations in an Al–Cu–Li aluminum alloy, J. Phys. D: Appl. Phys., Volume 45 (2012), 335304 | DOI
[34] Laser induced plasma characterization in direct and water confined regimes: new advances in experimental studies and numerical modelling, J. Phys. D: Appl. Phys., Volume 54 (2021), 055204 | DOI
Cited by Sources:
Comments - Policy