Comptes Rendus
Research article
Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 459-484.

This paper aims at providing exact expressions for the mechanical fields induced by Laser Shock Peening and comparing them to their numerical estimations. We use a uniaxial strain field hypothesis with an elastic perfectly plastic behavior to derive the stress wave equation. An exact solution to this equation is given using the method of characteristics for a step time profile for the pressure loading, and numerically using finite differences schemes adapted for this hyperbolic equation. An additional residual stress modeling is used, providing the residual stress distribution assuming a planar infinite plate with a finite thickness. Results are presented for three loading pressures, each one corresponding to a different structure in the exact solution. The exact and numerical results present a good match, allowing either the use of the exact solution for an initial estimation of the mechanical fields, or to test the accuracy of other numerical methods.

Cet article vise à fournir des expressions exactes pour les champs mécaniques induits par le grenaillage laser et à les comparer à leurs estimations numériques. Nous utilisons une hypothèse de champ de déformation uniaxial avec un comportement élastique parfaitement plastique pour obtenir l’équation de l’onde de contrainte. Une solution exacte de cette équation est donnée en utilisant la méthode des caractéristiques pour un profil temporel de la charge de pression, et numériquement en utilisant des schémas de différences finies adaptés à cette équation hyperbolique. Une modélisation supplémentaire des contraintes résiduelles est utilisée, fournissant la distribution des contraintes résiduelles en supposant une plaque infinie plane avec une épaisseur finie. Les résultats sont présentés pour trois pressions de chargement, chacune correspondant à une structure différente dans la solution exacte. Les résultats exacts et numériques présentent une bonne concordance, ce qui permet soit d’utiliser la solution exacte pour une estimation initiale des champs mécaniques, soit de tester la précision d’autres méthodes numériques.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.227
Keywords: Laser shock peening, Elastic-plastic wave propagation, Numerical simulation, Analytical solution, Plastic strains, Residual stresses
Mot clés : Grenaillage laser, Propagation d’ondes élasto-plastiques, Simulation numérique, Solution analytique, Déformations plastiques, Contraintes résiduelles

Lucas Lapostolle 1; Léo Morin 2; Katell Derrien 1; Laurent Berthe 1; Olivier Castelnau 1

1 PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l’Hopital, 75013, Paris, France
2 University of Bordeaux, CNRS, Arts et metiers Institute of Technology, Bordeaux INP, I2M, Bordeaux, F-33400, Talence, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_G2_459_0,
     author = {Lucas Lapostolle and L\'eo Morin and Katell Derrien and Laurent Berthe and Olivier Castelnau},
     title = {Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {459--484},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.227},
     language = {en},
}
TY  - JOUR
AU  - Lucas Lapostolle
AU  - Léo Morin
AU  - Katell Derrien
AU  - Laurent Berthe
AU  - Olivier Castelnau
TI  - Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 459
EP  - 484
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.227
LA  - en
ID  - CRMECA_2023__351_G2_459_0
ER  - 
%0 Journal Article
%A Lucas Lapostolle
%A Léo Morin
%A Katell Derrien
%A Laurent Berthe
%A Olivier Castelnau
%T Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening
%J Comptes Rendus. Mécanique
%D 2023
%P 459-484
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.227
%G en
%F CRMECA_2023__351_G2_459_0
Lucas Lapostolle; Léo Morin; Katell Derrien; Laurent Berthe; Olivier Castelnau. Exact expressions of the uniaxial perfectly elasto-plastic stress wave and induced mechanical fields in the case of a finite impact: application to laser shock peening. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 459-484. doi : 10.5802/crmeca.227. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.227/

[1] K. Ding; L. Ye Laser Shock Peening Performance and Process Simulation, Woodhead Publishing Limited, Cambridge, UK, 2006

[2] P. Peyre; R. Fabbro; P. Merrien; H. Lieurade Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour, Mater. Sci. Eng. A, Volume 210 (1996), pp. 102-113 | DOI

[3] P. Ballard Contraintes résiduelles induites par impact rapide. Application au choc laser, Phd thesis, Ecole Polytechnique (1991)

[4] P. Ballard; J. Fournier; R. Fabbro; J. Frelat Residual stresses induced by laser-shocks, J. Phys. IV, Volume 01 (1991), p. C3-487–C3–494 | DOI

[5] W. Braisted Finite element simulation of laser shock peening, Int. J. Fatigue, Volume 21 (1999), pp. 719-724 | DOI

[6] E. Julan; C. Stolz; S. Tahéri; P. Peyre; P. Gilles Simulation of laser peening for generation of a surface compressive stresses, 21e Congrès Français de Mécnique, 2013, p. 6

[7] P. Peyre; I. Chaieb; C. Braham FEM calculation of residual stresses induced by laser shock processing in stainless steels, Modell. Simul. Mater. Sci. Eng., Volume 15 (2007), pp. 205-221 | DOI

[8] P. Peyre; A. Sollier; I. Chaieb; L. Berthe; E. Bartnicki; C. Braham; R. Fabbro FEM simulation of residual stresses induced by laser Peening, Eur. Phys. J. Appl. Phys., Volume 23 (2003), pp. 83-88 | DOI

[9] Y. Xiang; R. Mei; S. Wang; F. Azad; L. Zhao; S. Su Numerical investigation of the effect of laser shock peening parameters on the residual stress and deformation response of 7075 aluminum alloy, Optik, Volume 243 (2021), 167446 | DOI

[10] R. A. Brockman; W. R. Braisted; S. E. Olson; R. D. Tenaglia; A. H. Clauer; K. Langer; M. J. Shepard Prediction and characterization of residual stresses from laser shock peening, Int. J. Fatigue, Volume 36 (2012), pp. 96-108 | DOI

[11] L. Lapostolle; K. Derrien; L. Morin; L. Berthe; O. Castelnau Modeling and simulation of laser shock waves in elasto-plastic 1D layered specimens, Int. J. Solids Struct., Volume 239-240 (2022), 111422 | DOI

[12] L. Lapostolle; L. Morin; K. Derrien; L. Berthe; O. Castelnau Modeling and simulation of laser shock waves in elasto-plastic polycrystalline microstructures, J. Mech. Phys. Solids, Volume 176 (2023), 105310 | DOI | MR

[13] L. Lapostolle; L. Morin; K. Derrien; L. Berthe; O. Castelnau Fast numerical estimation of residual stresses induced by laser shock peening, Eur. J. Mech. A/Solids, Volume 97 (2023), 104844 | DOI | MR

[14] T. Heuzé Lax–Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic–plastic solids, J. Comput. Phys., Volume 346 (2017), pp. 369-388 | DOI | MR | Zbl

[15] L. Wang Foundations of Stress Waves, Elsevier Science, Oxford, UK, 2007

[16] L. L. Wang Unloading waves and unloading failures in structures under impact loading, Int. J. Impact Eng., Volume 30 (2004), pp. 889-900 | DOI

[17] A. M. Korsunsky The modelling of residual stresses due to surface peening using eigenstrain distributions, J. Strain Anal. Eng. Des., Volume 40 (2005), pp. 817-824 | DOI

[18] M. Gelineau Etude de l’impact du grenaillage sur des composants mécaniques industriels à géométrie complexe, Phd thesis, Ecole Nationale Supérieure des Arts et Métiers (2018)

[19] D.J. Johns Thermal Stress Analyses, Pergamon Press, Oxford, UK, 1965

[20] F. Ahdad; M. Desvignes Contraintes résiduelles et déformations plastiques: Leurs relations mutuelles pour des pièces de géométrie simple, Matér. Tech., Volume 84 (1996), pp. 46-50 | DOI

[21] D. Glaser; C. Polese; A. Venter; D. Marais; J. Plaisier Evaluation of laser shock peening process parameters incorporating Almen strip deflections, Surf. Coat. Technol., Volume 434 (2022), 128158 | DOI

[22] R. J. Leveque Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK, 2002 | DOI

[23] F. Wang; G. James G.; W. G. John; J. P. Bradley; H. S. David A conservative eulerian numerical scheme for elastoplasticity and application to plate impact problems, Impact Comput. Sci. Eng., Volume 5 (1993), pp. 285-308 | DOI | MR | Zbl

[24] M. Ayad; L. Lapostolle; A. Rondepierre; C. Le Bras; M. Scius-Bertrand; S. Ünaldi; U. Trdan; Y. Rouchausse; J. Grassy; T. Maillot; V. Lapoujade; C. Michel; L. Berthe Modeling of multi-edge effects in the case of laser shock loadings applied on thin foils: Application for material characterization of aluminum alloys, J. Appl. Phys., Volume 131 (2022), 095902 | DOI

[25] R. Seddik; A. Rondepierre; S. Prabhakaran; L. Morin; V. Favier; T. Palin-Luc; L. Berthe Identification of constitutive equations at very high strain rates using shock wave produced by laser, Eur. J. Mech. - A/Solids, Volume 92 (2022), 104432 | DOI

[26] Y. Hu; C. Gong; Z. Yao; J. Hu Investigation on the non-homogeneity of residual stress field induced by laser shock peening, Surf. Coat. Technol., Volume 203 (2009), pp. 3503-3508 | DOI

[27] H. Kamkarrad; S. Narayanswamy FEM of residual stress and surface displacement of a single shot in high repetition laser shock peening on biodegradable magnesium implant, J. Mech. Sci. Technol., Volume 30 (2016), pp. 3265-3273 | DOI

[28] M. Achintha; D. Nowell Eigenstrain modelling of residual stresses generated by laser shock peening, J. Mater. Process. Technol., Volume 211 (2011), pp. 1091-1101 | DOI

[29] R. Ecault; F. Touchard; M. Boustie; L. Berthe; N. Dominguez Numerical modeling of laser-induced shock experiments for the development of the adhesion test for bonded composite materials, Compos. Struct., Volume 152 (2016), pp. 382-394 | DOI

[30] L. Lapostolle Etude numérique de l’influence d’hétérogénéités microstructurales sur les contraintes résiduelles induites par choc laser, Phd thesis, Arts et Métiers, Paris (2022)

[31] C. Cellard; D. Retraint; M. François; E. Rouhaud; D. Le Saunier Laser shock peening of Ti-17 titanium alloy: Influence of process parameters, Mater. Sci. Eng. A, Volume 532 (2012), pp. 362-372 | DOI

[32] M. Ayad; L. Lapostolle; A. Rondepierre; C. L. Bras; S. Unaldi; C. Donik; D. Klobcar; L. Berthe; U. Trdan New methodology of dynamical material response of dissimilar FSWed Al alloy joint under high strain rate laser shock loading, Mater. Des., Volume 222 (2022), 111080 | DOI

[33] P. Peyre; L. Berthe; V. Vignal; I. Popa; T. Baudin Analysis of laser shock waves and resulting surface deformations in an Al–Cu–Li aluminum alloy, J. Phys. D: Appl. Phys., Volume 45 (2012), 335304 | DOI

[34] M. Scius-Bertrand; L. Videau; A. Rondepierre; E. Lescoute; Y. Rouchausse; J. Kaufman; D. Rostohar; J. Brajer; L. Berthe Laser induced plasma characterization in direct and water confined regimes: new advances in experimental studies and numerical modelling, J. Phys. D: Appl. Phys., Volume 54 (2021), 055204 | DOI

Cited by Sources:

Comments - Policy