Comptes Rendus
Implementation of the c-phi reduction procedure in Cast3M code for calculating the stability of retaining walls in the layered backfill with strength parameters reduction by elasto-plastic finite element analysis using fields data
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 485-523.

This paper presents an implementation of the c-phi reduction procedure in the finite element code Cast3M. This procedure is first validated on a simple example of bearing capacity of a strip footing and then used to evaluate the stability factor of a geotechnical structure composed of two levels of backfill retained by two retaining walls, with a road built on the top of the second backfill. The results of the c-phi reduction procedure for the construction of first and second backfill are also compared to other analysis methods classically used in geotechnics and to the results of finite element calculations.

Cet article présente une implémentation de la procédure de réduction c-phi dans le code aux éléments finis Cast3M. Cette procédure est d’abord validée sur un exemple simple de capacité portante d’une semelle filante, puis utilisée pour évaluer le facteur de stabilité d’une structure géotechnique composée de deux niveaux de remblai retenus par deux murs de soutènement, avec une route construite sur le dessus du second remblai. Les résultats de la procédure de réduction c-phi pour la construction du premier et du second remblai sont également comparés à d’autres méthodes d’analyse classiquement utilisées en géotechnique et aux résultats des calculs par éléments finis.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.230
Keywords: Implementation, C-phi reduction procedure, Code Cast3M, Stability factor, Geotechnical structure, Finite element calculations
Mot clés : Mise en œuvre, Procédure de réduction c-phi, Code Cast3M, Facteur de stabilité, Structure géotechnique, Calculs par éléments finis

Zoa Ambassa 1, 2; Jean Chills Amba 1, 2; Nandor Tamaskovics 3

1 Laboratory of Energy Modeling Materials and Methods (E3M), National Higher Polytechnic School of Douala, University of Douala, P.O. Box: 2701 Douala, Cameroon
2 Department of Civil Engineering, National Higher Polytechnic School of Douala, University of Douala, Cameroon
3 TU Bergakademie Freiberg, Geotechnical Institute, Chair of Soil Mechanics and Ground Engineering, Gustav-Zeuner-Straße 1/Room 014/Rom 016, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_G2_485_0,
     author = {Zoa Ambassa and Jean Chills Amba and Nandor Tamaskovics},
     title = {Implementation of the c-phi reduction procedure in {Cast3M} code for calculating the stability of retaining walls in the layered backfill with strength parameters reduction by elasto-plastic finite element analysis using fields data},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {485--523},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.230},
     language = {en},
}
TY  - JOUR
AU  - Zoa Ambassa
AU  - Jean Chills Amba
AU  - Nandor Tamaskovics
TI  - Implementation of the c-phi reduction procedure in Cast3M code for calculating the stability of retaining walls in the layered backfill with strength parameters reduction by elasto-plastic finite element analysis using fields data
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 485
EP  - 523
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.230
LA  - en
ID  - CRMECA_2023__351_G2_485_0
ER  - 
%0 Journal Article
%A Zoa Ambassa
%A Jean Chills Amba
%A Nandor Tamaskovics
%T Implementation of the c-phi reduction procedure in Cast3M code for calculating the stability of retaining walls in the layered backfill with strength parameters reduction by elasto-plastic finite element analysis using fields data
%J Comptes Rendus. Mécanique
%D 2023
%P 485-523
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.230
%G en
%F CRMECA_2023__351_G2_485_0
Zoa Ambassa; Jean Chills Amba; Nandor Tamaskovics. Implementation of the c-phi reduction procedure in Cast3M code for calculating the stability of retaining walls in the layered backfill with strength parameters reduction by elasto-plastic finite element analysis using fields data. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 485-523. doi : 10.5802/crmeca.230. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.230/

[1] R. V. Whitman; W. A. Bailey Use of computers for slope stability analysis, J. Soil Mech. Found. Div. ASCE, Volume 93 (1967) no. SM4, pp. 475-498 | DOI

[2] D. V. Griffiths; P. Lane Slope stability analysis by finite elements, Géotechnique, Volume 49 (1999) no. 3, pp. 387-403 | DOI

[3] D. V. Griffiths Stability analysis of highly variable soils by elasto-plastic finite elements (2000) (Technical report)

[4] D. V. Griffiths Stability analysis of highly variable soils by elasto-plastic finite elements, Advanced Numerical Applications and Plasticity in Geomechanics (CISM), Volume 426, Springer, 2001, pp. 159-229 | DOI

[5] J. M. Duncan State of the art: limit equilibrium and finite-element analysis of slopes, J. Geotech. Engng. ASCE, Volume 122 (1996) no. 7, pp. 577-596 | DOI

[6] W. Fellenius Calculation of the stability of earth dams, Proceedings of the 2nd Congress on Large Dams, Engineering, Washington DC, Volume 4, 1936 (Corpus ID: 204624163)

[7] A. W. Bishop The use of the slip circle in the stability analysis of slopes, Geotechnique, Volume 5 (1955) no. 1, pp. 7-17 | DOI

[8] J. Lowe; L. Karafiath Stability of earth dams upon drawdown, Proceedings of the 1st Pan-American Conference on Soil Mechanics and Foundation Engineering, 1960, pp. 537-552

[9] N. Janbu Slope stability computations, Soil Mechanics and Foundation Engineering Report, Technical University of Norway, Trondheim, 1968

[10] N. R. Morgenstern; V. E. Price The analysis of the stability of general slip surfaces, Geotechnique, Volume 15 (1965) no. 1, pp. 79-93 | DOI

[11] N. R. Morgenstern Stability charts for earth slopes during rapid drawdown, Geotechnique, Volume 13 (1963), pp. 121-131 | DOI

[12] E. A. Spencer Method of analysis of the stability of embankments assuming parallel interslice forces, Geotechnique, Volume 17 (1967) no. 1, pp. 11-26 | DOI

[13] T. W. Lambe; F. Silva The ordinary method of slices revisited, Geotech. News, Volume 13 (1995) no. 3, pp. 49-53

[14] I. M. Smith; R. Hobbs Finite element analysis of centrifuged and built-up slopes, Geotechnique, Volume 24 (1974) no. 4, pp. 531-559 | DOI

[15] D. W. Taylor Stability of earth slopes, J. Boston Soc. Civ. Eng., Volume 24 (1937), pp. 197-246

[16] O. C. Zienkiewicz; C. Humpheson; R. W. Lewis Associated and non-associated viscoplasticity and plasticity in soils mechanics, Geotechnique, Volume 25 (1975) no. 4, pp. 671-689 | DOI

[17] D. V. Griffiths Computation of bearing capacity factors using finite elements, Géotechnique, Volume 32 (1982) no. 3, pp. 195-202 | DOI

[18] D. V. Griffiths Computation of bearing capacity on layered soils, International Conference on Numerical Methods, Edmonton, Volume 1, 1982, pp. 163-170

[19] A. W. Bishop; N. R. Morgenstern Stability coefficients for earth slopes, Geotechnique, Volume 10 (1960), pp. 129-150 | DOI

[20] D. V. Griffiths; G. A. Fenton Probabilistic slope stability analysis by finite elements, J. Geotech. Geoenviron. Eng., Volume 5 (2004), pp. 507-518 | DOI

[21] H. Chengya; Y. Leihua; S. Chenguang; N. Qihang Variational method for determining slope instability based on the strength reduction method, Bull. Eng. Geol. Environ., Volume 81 (2022) no. 10, pp. 1-12 | DOI

[22] D. Anindita; K. S. Kumar; S. A. Rajib Numerical study on stability of soil slopes by limit equillibrium and finite element methods, National Level Conference on Engineering Problems and Application of Mathematics, NIT Agartala, June, 2016

[23] R. W. Dakshith; D. Ashley; Y. Greg; K. Manoj; T. O. Ean Spatially variable coal slope stability analysis using image-based scaled boundary finite element method, 15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII), Virtual Congress: 31 July–5 August, 2022 (S. Koshizuka, ed.), 2022 (12 pages)

[24] M. Huang; C.-Q. Jia Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage, Comput. Geotech., Volume 36 (2009) no. 1–2, pp. 93-101 | DOI

[25] T. P. Huy; Z. O. Htet; J. Cheng Stability of slope and seepage analysis in earth dam using numerical finite element model, Study of Civil Engineering and Architecture (SCEA), Volume 2 (2013) no. 4, pp. 104-108

[26] S. H. Jiang; D. Q. Li; L. M. Zhang; C. B. Zhou Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method, Eng. Geol., Volume 168 (2014), pp. 120-128 | DOI

[27] Z. Ambassa; J. C. Amba; J. C. Tchamba Modélisation et évaluation de la stabilité d’un talus renforcé par clouage industriel en utilisant la méthode c-phi reduction de Plaxis, J. Afr. Sci., Volume 13 (2017) no. 1, pp. 381-399

[28] A. Mouyeaux; C. Carvajal; P. Bressolette; L. Peyras; P. Breul; C. Bacconnet Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data, Comput. Geotech., Volume 101 (2019), pp. 34-47 | DOI

[29] K. Navid; Z. Annan; N. Majidreza; S. Shui-Long Improved prediction of slope stability using hybrid stacking ensemble method based on finite element analysis and field data, J. Rock Mech. Geotech. Eng., Volume 13 (2021), pp. 188-201

[30] Y. Yongtao; L. Feng; W. Wenan Assessing slope stability with an improved 3D numerical manifold method, Rock Mech. Rock Eng. J., Volume 55 (2022) no. 10, pp. 1-15 | DOI

[31] F. S. Wong Uncertainties in FE modeling of slope stability, Comput. Struct., Volume 19 (1984), pp. 777-791 | DOI

[32] S. W. Sloan Geotechnical stability analysis, Geotechnique, Volume 63 (2013) no. 7, pp. 531-572 | DOI

[33] F. Tschuchnigg; H. F. Schweiger; S. W. Sloan; A. V. Lyamin; I. Raissakis Comparison of finite-element limit analysis and strength reduction techniques, Geotechnique, Volume 65 (2015) no. 4, pp. 249-257 | DOI

[34] P. G. Fookes Tropical residual soils, Geological Society of London, Professional Handbooks, Geological Society of London, 1997 (ISBN-13: 978-1897799383. 184 pages)

[35] Z. Ambassa; J. C. Amba Assessment of stiffness and strength parameters for the soft soil Model of clays of Cameroon, Hindawi, Int. J. Adv. Civ. Eng., Volume 1 (2020), pp. 1-16

[36] Z. Ambassa; J. C. Amba; F. X. Mbelen Monitoring and numerical modeling of the full-scale experimental embankment on soft Douala clays of Cameroon, Int. J. Civil Eng. Technol., Volume 11 (2020) no. 7, pp. 1-9

[37] P. Mestat Lois de comportement des géomatériaux et modélisation par la méthode des éléments finis, Etudes et recherches des Laboratoires Central des Ponts et Chaussées-série géotechnique (GT 52), Laboratoire Central des Ponts et Chausees (LCPC), Paris, 1993 (ISSN : 1157-3910. 139 pages)

[38] A. J. Abbo; S. W. Sloan A smooth hyperbolic approximation to the Mohr–Coulomb yield criterion, Comput. Struct., Volume 54 (1995) no. 3, pp. 427-441 | DOI | Zbl

[39] O. C. Zienkiewicz; S. Valliappan; I. P. King Elasto-plastic solution of engineering problems, Initial stress, finite element approach, Int. J. Numer. Methods Eng., Volume 1 (1969), pp. 75-100 | DOI | Zbl

[40] C. S. Desai Overview, trends and projections: theory and application of the finite element method in geotechnical engineering, Proceedings of the Symposium Vicksburg, Mississipi, U.S. Army Engineer Waterways Experiment Station, January 1972 (C. S. Desai, ed.), Volume 1, Corps of Engineers, 1972, pp. 3-90

[41] P. Mestat; P. Humbert Référentiel de tests pour la vérification de la programmation des lois de comportement dans les logiciels d’éléments finis, Bull. laboratoires ponts chaussées, Volume 230 (2001), pp. 23-38

[42] D. M. Milovic Comparison between the calculated and experimental values of the ultimate bearing capacity, Proceedings, 6th International Conference on Soil Mechanics and Foundation Engineering, 8–15 September 1965, Volume 2, University of Toronto Press, Montréal, 1965, pp. 142-144

[43] V. V. Sokolovskij Statics of Soil Media, Butterworths, London, 1960, 237 pages Translated from the second Russian edition (1954) by D. H. Jones and A. N. Schofield

[44] K. Therzaghi Theoretical Soil Mechanics, John Wiley, New York, 1943, 510 pages | DOI

[45] B. Simpson Finite elements applied to problems of plane strain deformation in soil, PhD thesis, Cambridge University (1973)

[46] R. De Borst Calculation of collapse loads using higher order elements, IUTAM Conference on Deformation and Failure of Granular Materials, Balkema, Rotterdam, 1982, pp. 503-513

[47] R. De Borst; P. Vermeer Possibilities and limitations of finite elements for limit analysis, Geotechnique, Volume 34 (1984) no. 2, pp. 199-210 | DOI

[48] R. De Borst; P. Vermeer Non-associated plasticity for soils, Concr. Rock-Heron, Volume 29 (1984) no. 3, p. 64

[49] R. Casciaro; L. Cascini Limit analysis by incremental-iterative procedure, IUTAM Conference on Deformation and Failure of Granular Materials, Balkema, Rotterdam, 1982, pp. 523-533

[50] G. L. Jiang Application de l’analyse limite à l’étude de la stabilité des massifs de sol, Thèse de doctorat ENPC, Paris (1992)

[51] J. Salençon Calcul à la rupture et analyse limite, Presses de l’ENPC, Paris, 1983, 366 pages

[52] P. Mestat Validation du progiciel CESAR-LCPC en comportement mécanique non linéaire. Volume 1 : Fondations superficielles et tunnels, Rapport d’études et de recherches des Laboratoires des Ponts et des Chaussées (Série Géotechnique, GT 58), 1994 (ISSN 1157-3910. 179 pages)

[53] J. T. Christian; A. J. Hagmann; W. A. Marr Incremental plasticity analysis of frictional soils, Int. J. Numer. Anal. Method Geomech., Volume 1 (1997) no. 4, pp. 343-375 | DOI | Zbl

[54] J. C. Nagtegaal; D. M. Parks; J. P. Rice On numerically accurate finite elements solutions in the fully plastic range, Comput. Methods Appl. Mech. Eng., Volume 4 (1974), pp. 153-177 | DOI | MR | Zbl

[55] B. Hansen; N. H. Christiensen Discussion of theoretical bearing capacity of very shallows footings, J. Soil Mech. Found. Div. ASCE, Volume 95 (1969) no. SM6, pp. 1568-1572 | DOI

[56] C. T. Toh; S. W. Sloan Finite element analyses of isotropic and anisotropic cohesive soils with a view to correctly predicting impending collapse, Int. J. Numer. Anal. Methods Geomech., Volume 4 (1980), pp. 1-23 | DOI | Zbl

[57] H. Van-Langen; P. A. Vermeer Automatic step size correction for non-associated plasticity problems, Int. J. Numer. Methods Eng., Volume 29 (1990), pp. 579-598 | DOI | Zbl

[58] C. S. Desai; H. J. Siriwardane Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials, Prentice Hall, Englewood Cliffs, NJ, 1984 (ISBN 0-13-167940-6. 468 pages)

[59] L. Jurgenson The application of theories of elasticity and plasticity to foundation problems, Contributions to Soil Mechanics 1925–1940, Boston Society of Civil Engineers, ISSMGE 01-0036, Boston, MA, 1934

[60] H. J. Siriwardane; C. S. Desai Computational procedures for nonlinear three-dimensional analysis with some advanced constitutive laws, Int. J. Numer. Anal. Methods Geomech., Volume 7 (1983) no. 2, pp. 143-171 | DOI | Zbl

[61] S. W. Sloan; M. F. Randolph Numerical prediction of collapse loads using finite element methods, Int. J. Numer. Anal. Methods Geomech., Volume 6 (1982), pp. 47-76 | DOI | Zbl

[62] Cast3M-CEA©, 2022 (Cast3M is a research FEM code environment; its development is sponsored by the French Atomic Energy Commission, France, see web site: http://www/cast3m.cea.fr/)

[63] A. S. Vesic Analysis of ultimate loads of shallow foundations, J. Soil Mech. Found. Div. ASCE, Volume 99 (1973) no. SM1, pp. 45-73 | DOI

[64] J. A. Brinch-Hansen General Formula for Bearing Capacity, Danish Geotechnical Institute Bulletin 11, 5, Copenhagen, and revue Ingeniøren, 1961, pp. 38-46

[65] J. A. Brinch-Hansen Revised and Extended Formula for Bearing Capacity, Danish Geotechnical Institute Bulletin, 28, 1970, pp. 5-11

[66] G. G. Meyerhof Some recent research on the bearing capacity of foundations, Can. Geotech. J., Volume 1 (1963) no. 1, pp. 16-26 | DOI

[67] G. G. Meyerhof The Bearing Capacity and Settlements of Foundations, Tech Press, 1982 (ISBN-13: 978-0920692042)

[68] PLAXIS© Finite Element Code for Soil and Rock Analysis, Material Models Manual, 8, Brinkgreve, Delft University of Technology, 2018, 256 pages

[69] D. C. Drucker A more fundamental approach to plastic stress-strain analysis, Proceedings of the first UN National Congress of Applied Mechanics, Division of Applied Mathematics, Brown University, USA, 1951, pp. 487-491

[70] N. Tamaskovics Stability calculation with FEM with strength parameter reduction, Geotechnik, Volume 42 (2019) no. 2, pp. 88-97

[71] G. T. R. Guide des Terrassements Routiers, réalisation de remblais et des couches de forme, Fascicules I et II, SETRA-LCPC, Ministère de l’Equipement, des Transport et du Tourisme, France, 2000, p. 211

[72] D. M. Potts; L. Zdravkovic Finite Element Analysis in Geotechnical Engineering: Theory, Thomas Telford Editors, 2001, 444 pages (ISBN-13: 978-0727727831)

[73] R. B. Brinkgreve PLAXIS user’s manual-Bentley: Finite Element Code for Soils and Rocks Analyses, 2021 https://www.bentley.com

[74] OPTUM G2© Geotechnical analysis software-OptumCE: Finite Element Limit Analysis (FELA) Code for Soils and Rocks Analyses, 2022 https://www.optumce.com

[75] Talren v5© Advanced slope stability analysis – Developed by Terrasol, France, 2020 https://www.terrasol.fr

[76] Tochnog© Tochnog Professional software: Finite Element Program, GID User’s Manual, Tochnog Professional Company, 2022 https://www.tochnogprofessional.nl

[77] FLAC© ITASCA International-Finite Differences code for Geotechnical Analyses, 2019 https://www.itascainternational.com

Cited by Sources:

Comments - Policy