Comptes Rendus
Research article
A comparative analysis for crack identification in structural health monitoring: a focus on experimental crack length prediction with YUKI and POD-RBF
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 55-70.

In recent years, substantial investments in structural construction underscore the paramount importance of ensuring structural integrity for safety and dependability. Structural Health Monitoring (SHM) has emerged as a pivotal tool for assessing structural health, with an emphasis on damage detection, localisation, and quantification, particularly through vibration-based methods that exploit variations in modal properties as precursors to structural damage. This study presents an innovative methodology that synergistically combines Proper Orthogonal Decomposition and Radial Basis Function interpolation for predicting structural responses based on crack parameters. Additionally, the YUKI algorithm, leveraging population clustering for optimisation, is introduced. The approach is rigorously assessed through experimental analysis of two distinct beams (Beam I and Beam II) exhibiting varying crack depths. The results demonstrate the effectiveness of the POD-RBF-YUKI approach, indicating a notable level of accuracy and consistency. Comparative evaluations with conventional optimisation algorithms, namely Cuckoo, Bat, and Particle Swarm Optimisation, reveal similar Mean Percentage Error values but with increased result variability, whereas Deep Artificial Neural Network models with varied hidden layer sizes.

Ces dernières années, des investissements substantiels dans la construction structurelle ont mis en évidence l’importance primordiale de l’intégrité structurelle pour la sécurité et la fiabilité. La surveillance de la santé des structures (SHM) est devenue un outil essentiel pour évaluer la santé des structures, en mettant l’accent sur la détection, la localisation et la quantification des dommages, en particulier grâce à des méthodes basées sur les vibrations qui exploitent les variations des propriétés modales en tant que précurseurs des dommages structurels. Cette étude présente une méthodologie innovante qui combine de manière synergique la décomposition orthogonale appropriée (POD) et l’interpolation de la fonction de base radiale (RBF) pour prédire les réponses structurelles basées sur les paramètres des fissures. En outre, l’algorithme YUKI, qui tire parti du regroupement de populations pour l’optimisation, est présenté. L’approche est rigoureusement évaluée par l’analyse expérimentale de deux poutres distinctes (poutre I et poutre II) présentant différentes profondeurs de fissures. Les résultats démontrent l’efficacité de l’approche POD-RBF-YUKI, indiquant un niveau notable de précision et de cohérence. Les évaluations comparatives avec les algorithmes d’optimisation conventionnels, à savoir Cuckoo, Bat et Particle Swarm Optimisation, révèlent des valeurs d’erreur moyenne similaires mais avec une variabilité accrue des résultats, tandis que les modèles de réseaux neuronaux artificiels profonds (ANN) avec des tailles de couches cachées variées.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.241
Keywords: Crack identification, Model reduction, Experimental modal analysis, Inverse analysis, YUKI algorithm
Mot clés : Identification des fissures, Réduction du modèle, Analyse modale expérimentale, Analyse inverse, Algorithme YUKI

Roumaissa Zenzen 1; Ayoub Ayadi 2; Brahim Benaissa 3; Idir Belaidi 4; Enes Sukic 5; Tawfiq Khatir 6

1 LMT Laboratory, Faculty of Sciences and Technology, University of Jijel, Jijel, Algeria
2 University of Biskra, Laboratoire de Génie Energétique et Matériaux, LGEM, Faculty of Sciences and Technology, Biskra, 07000, Algeria
3 Design Engineering Laboratory, Toyota Technological Institute, Nagoya, Japan
4 LEMI Laboratory, Department of Mechanical Engineering, University M’hamed Bougara Boumerdes, 35000 Boumerdes, Algeria
5 Faculty of Information Technology and Engineering - FITI, University Union - Nikola Tesla, 11070 Belgrade, Serbia
6 Artificial Intelligence Laboratory for Mechanical and Civil Structures, and Soil, Institute of Technology, University Center of Naama, 45000 Naama, P.O.B. 66, Algeria
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2024__352_G1_55_0,
     author = {Roumaissa Zenzen and Ayoub Ayadi and Brahim Benaissa and Idir Belaidi and Enes Sukic and Tawfiq Khatir},
     title = {A comparative analysis for crack identification in structural health monitoring: a focus on experimental crack length prediction with {YUKI} and {POD-RBF}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {55--70},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.241},
     language = {en},
}
TY  - JOUR
AU  - Roumaissa Zenzen
AU  - Ayoub Ayadi
AU  - Brahim Benaissa
AU  - Idir Belaidi
AU  - Enes Sukic
AU  - Tawfiq Khatir
TI  - A comparative analysis for crack identification in structural health monitoring: a focus on experimental crack length prediction with YUKI and POD-RBF
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 55
EP  - 70
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.241
LA  - en
ID  - CRMECA_2024__352_G1_55_0
ER  - 
%0 Journal Article
%A Roumaissa Zenzen
%A Ayoub Ayadi
%A Brahim Benaissa
%A Idir Belaidi
%A Enes Sukic
%A Tawfiq Khatir
%T A comparative analysis for crack identification in structural health monitoring: a focus on experimental crack length prediction with YUKI and POD-RBF
%J Comptes Rendus. Mécanique
%D 2024
%P 55-70
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.241
%G en
%F CRMECA_2024__352_G1_55_0
Roumaissa Zenzen; Ayoub Ayadi; Brahim Benaissa; Idir Belaidi; Enes Sukic; Tawfiq Khatir. A comparative analysis for crack identification in structural health monitoring: a focus on experimental crack length prediction with YUKI and POD-RBF. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 55-70. doi : 10.5802/crmeca.241. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.241/

[1] A. Rytter Vibrational based inspection of civil engineering structures, PhD thesis, Dept. of Building Technology and Structural Engineering, Aalborg University (1993)

[2] S. W. Doebling; C. R. Farrar; M. B. Prime; D. W. Shevitz Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review (1996) (Technical report) | DOI

[3] Y. Bao; Z. Chen; S. Wei; Y. Xu; Z. Tang; H. Li The state of the art of data science and engineering in structural health monitoring, Engineering, Volume 5 (2019), pp. 234-242 | DOI

[4] H.-N. Li; L. Ren; Z.-G. Jia; T.-H. Yi; D.-S. Li State-of-the-art in structural health monitoring of large and complex civil infrastructures, J. Civ. Struct. Health Monit., Volume 6 (2016), pp. 3-16 | DOI

[5] Y. Liu; S. Nayak Structural health monitoring: State of the art and perspectives, JOM, Volume 64 (2012), pp. 789-792 | DOI

[6] H. Sohn; C. R. Farrar; F. M. Hemez; D. D. Shunk; D. W. Stinemates; B. R. Nadler A review of structural health monitoring literature: 1996–2001, Los Alamos National Laboratory, Los Alamos, NM, USA (2003) (LA-13976-MS) (Technical report)

[7] E. Ghandourah; K. Bendine; S. Khatir; B. Benaissa; E. M. Banoqitah; A. M. Alhawsawi; E. B. Moustafa Novel approach-based sparsity for damage localization in functionally graded material, Buildings, Volume 13 (2023), 1768 | DOI

[8] M. Saadatmorad; S. Khatir; C. Le Thanh; B. Benaissa; S. Mahmoudi Detecting damages in metallic beam structures using a novel wavelet selection criterion, J. Sound Vib., Volume 578 (2024), 118297 | DOI

[9] H. Tran-Ngoc; S. Khatir; T. Le-Xuan; G. De Roeck; T. Bui-Tien; M. A. Wahab A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures, Int. J. Eng. Sci., Volume 157 (2020), 103376 | DOI | MR | Zbl

[10] B. Benaissa; S. Khatir; M. S. Jouini; M. K. Riahi Optimal axial-probe design for foucault-current tomography: a global optimization approach based on linear sampling method, Energies, Volume 16 (2023), 2448 | DOI

[11] M. Slimani; T. Khatir; S. Tiachacht; D. Boutchicha; B. Benaissa Experimental sensitivity analysis of sensor placement based on virtual springs and damage quantification in CFRP composite, J. Mater. Eng. Struct., Volume 9 (2022), pp. 207-220

[12] Y. Zou; L. Tong; G. P. Steven Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review, J. Sound Vib., Volume 230 (2000), pp. 357-378 | DOI

[13] E. Ghandourah; S. Khatir; E. M. Banoqitah; A. M. Alhawsawi; B. Benaissa; M. A. Wahab Enhanced ANN predictive model for composite pipes subjected to low-velocity impact loads, Buildings, Volume 13 (2023), 973 | DOI

[14] A. Kahouadji; S. Tiachacht; M. Slimani; A. Behtani; S. Khatir; B. Benaissa Vibration-based damage assessment in truss structures using local frequency change ratio indicator combined with metaheuristic optimization algorithms BT, Proceedings of the International Conference of Steel and Composite for Engineering Structures (R. Capozucca; S. Khatir; G. Milani, eds.), Springer International Publishing, Cham, 2023, pp. 171-185 | DOI

[15] Y. Yang; Y. Zhang; X. Tan Review on vibration-based structural health monitoring techniques and technical codes, Symmetry (Basel), Volume 13 (2021), 1998

[16] W. Fan; P. Qiao Vibration-based damage identification methods: a review and comparative study, Struct. Health Monit., Volume 10 (2011), pp. 83-111 | DOI

[17] R. D. Adams; P. Cawley; C. J. Pye; B. J. Stone A vibration technique for non-destructively assessing the integrity of structures, J. Mech. Eng. Sci., Volume 20 (1978), pp. 93-100 | DOI

[18] O. S. Salawu Detection of structural damage through changes in frequency: a review, Eng. Struct., Volume 19 (1997), pp. 718-723 | DOI

[19] E. P. Carden; P. Fanning Vibration based condition monitoring: a review, Struct. Health Monit., Volume 3 (2004), pp. 355-377 | DOI

[20] S. Das; K. Roy A state-of-the-art review on frf-based structural damage detection: development in last two decades and way forward, Int. J. Struct. Stab. Dyn., Volume 22 (2022), 2230001

[21] R. Hou; Y. Xia Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019, J. Sound Vib., Volume 491 (2021), 115741

[22] M. Frank; D. Drikakis; V. Charissis Machine-learning methods for computational science and engineering, Computation, Volume 8 (2020), 15 | DOI

[23] J. P. Amezquita-Sanchez; M. Valtierra-Rodriguez; M. Aldwaik; H. Adeli Neurocomputing in civil infrastructure, Sci. Iran., Volume 23 (2016), pp. 2417-2428

[24] J. P. Amezquita-Sancheza; M. Valtierra-Rodriguez; H. Adeli Machine learning in structural engineering, Sci. Iran., Volume 27 (2020), pp. 2645-2656

[25] A. O. Brahim; R. Capozzuca; S. Khatir; E. Magagnini; B. Benaissa; A. Wahab; T. Cuong-Le Artificial neural network and yuki algorithm for notch depth prediction in X70 steel specimens, Theor. Appl. Fract. Mech., Volume 129 (2023), 104227

[26] O. Avci; O. Abdeljaber; S. Kiranyaz; M. Hussein; M. Gabbouj; D. J. Inman A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications, Mech. Syst. Signal Process., Volume 147 (2021), 107077 | DOI

[27] N. Bakhary; H. Hao; A. J. Deeks Damage detection using artificial neural network with consideration of uncertainties, Engng Struct., Volume 29 (2007), pp. 2806-2815 | DOI

[28] J. J. Lee; J. W. Lee; J. H. Yi; C. B. Yun; H. Y. Jung Neural networks-based damage detection for bridges considering errors in baseline finite element models, J. Sound Vib., Volume 280 (2005), pp. 555-578 | DOI

[29] M. Mehrjoo; N. Khaji; H. Moharrami; A. Bahreininejad Damage detection of truss bridge joints using artificial neural networks, Expert Syst. Appl., Volume 35 (2008), pp. 1122-1131 | DOI

[30] S. Khatir; T. Khatir; D. Boutchicha; C. Le Thanh; N. H. Tran; T. Q. Bui; R. Capozucca; M. Abdel Wahab An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA, Smart Struct. Syst., Volume 25 (2020), pp. 605-617

[31] H. Tran-Ngoc; S. Khatir; G. De Roeck; T. Bui-Tien; M. A. Wahab An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm, Eng. Struct., Volume 199 (2019), 109637 | DOI

[32] R. Zenzen; I. Belaidi; S. Khatir; M. A. Wahab A damage identification technique for beam-like and truss structures based on FRF and Bat Algorithm, C. R. Méc., Volume 346 (2018), pp. 1253-1266 | DOI

[33] R. Zenzen; S. Khatir; I. Belaidi; C. Le Thanh; M. A. Wahab A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures, Compos. Struct., Volume 248 (2020), 112497 | DOI

[34] S. Ardani; E. Akintunde; D. Linzell; S. E. Azam; Q. Alomari Evaluating pod-based unsupervised damage identification using controlled damage propagation of out-of-service bridges, Eng. Struct., Volume 286 (2023), 116096 | DOI

[35] V. Krishnaswamy; M. Pandey Nonlinear dynamic analysis of a simply supported beam with breathing crack using proper orthogonal decomposition based reduced-order modeling, Advances in Rotor Dynamics, Control, and Structural Health Monitoring: Select Proceedings of ICOVP 2017, Springer, Germany, 2020, pp. 315-325 | DOI

[36] C. Shane; R. Jha Proper orthogonal decomposition based algorithm for detecting damage location and severity in composite beams, Mech. Syst. Signal Process., Volume 25 (2011), pp. 1062-1072 | DOI

[37] S. Eftekhar Azam; A. Rageh; D. Linzell Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition, Struct. Control Health Monit., Volume 26 (2019), e2288 | DOI

[38] A. Khatir; R. Capozucca; S. Khatir; E. Magagnini; B. Benaissa; C. Le Thanh; M. A. Wahab A new hybrid PSO-YUKI for double cracks identification in CFRP cantilever beam, Compos. Struct., Volume 311 (2023), 116803 | DOI

[39] B. Benaissa; N. Aït Hocine; I. Belaidi; A. Hamrani; V. Pettarin Crack identification using model reduction based on proper orthogonal decomposition coupled with radial basis functions, Struct. Multidiscip. Optim., Volume 54 (2016), pp. 265-274 | DOI

[40] B. Benaissa; N. A. Hocine; S. Khatir; M. K. Riahi; S. Mirjalili YUKI Algorithm and POD-RBF for Elastostatic and dynamic crack identification, J. Comput. Sci., Volume 55 (2021), 101451 | DOI

[41] S. Khatir; M. Abdel Wahab; S. Tiachacht; C. Le Thanh; R. Capozucca; E. Magagnini; B. Benaissa Damage identification in steel plate using FRF and inverse analysis, Frat. Integr. Strutt. Struct. Integr., Volume 58 (2021), pp. 416-433

[42] S. Khatir; S. Tiachacht; B. Benaissa; C. Le Thanh; R. Capozucca; M. Abdel Wahab Damage identification in frame structure based on inverse analysis, Proceedings of the 2nd International Conference on Structural Damage Modelling and Assessment: SDMA 2021, 4–5 August, Ghent University, Belgium, Springer, Germany, 2022, pp. 197-211 | DOI

[43] X. Yang; A. Hossein Gandomi Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., Volume 29 (2012), pp. 464-483 | DOI

[44] A. H. Gandomi; X.-S. Yang; A. H. Alavi Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., Volume 29 (2013), pp. 17-35 | DOI

[45] J. Kennedy; R. Eberhart Particle swarm optimization, Proceedings of ICNN’95-International Conference on Neural Networks, Volume 4, IEEE, USA, 1995, pp. 1942-1948 | DOI

[46] M. Seguini; N. Djamel; B. Djilali; S. Khatir; M. A. Wahab Crack prediction in beam-like structure using ANN based on frequency analysis, Frat. Integr. Strutt., Volume 16 (2022), pp. 18-34 | DOI

Cited by Sources:

Comments - Policy