Particulate composites are considered here as multiphase composite in which the interfaces are imperfect. When the interface mechanical properties are those of a linear elastic material, the minimum of potential and complementary energy is used in order to obtain bounds of effective elastic modulus of the composite. Test displacements or stress fields are build and characterized using Green’s functions of a comparison homogeneous body, polarization fields and extension of the classical Lippmann–Schwinger equations. Then when spatial distribution of phases are known, in particular for isotropic distribution of phases or patterns, a generalization of Hashin–Shtrikman principle is obtained and lower and upper bounds are proposed.
Les composites particulaires sont composés d’une matrice à renforts particulaires, dans cette note les interfaces entre phases sont considérées imparfaites. Lorsque les propriétés mécaniques de l’interface sont celles d’un matériau élastique linéaire, les principes de minimum de l’énergie potentielle ou complémentaire sont utilisés afin d’obtenir des bornes sur les modules effectifs d’élasticité du composite. Des champs de déplacements ou des champs de contrainte admissibles sont construits et caractérisés à l’aide des fonctions de Green d’un corps homogène de comparaison, utilisant des champs de polarisation et une extension des équations classiques de Lippmann–Schwinger à des champs discontinus. Ensuite, lorsque la distribution spatiale des phases est connue, en particulier pour une distribution isotrope des phases ou des motifs, une généralisation du principe de Hashin–Shtrikman est obtenue et des bornes inférieures et supérieures du comportement effectif sont proposées.
Accepted:
Published online:
Mots-clés : Composites, interfaces imparfaites, encadrement, bornes
Claude Stolz 1

@article{CRMECA_2024__352_G1_39_0, author = {Claude Stolz}, title = {On bounds of the effective behavior of particulate composites with imperfect interface}, journal = {Comptes Rendus. M\'ecanique}, pages = {39--54}, publisher = {Acad\'emie des sciences, Paris}, volume = {352}, year = {2024}, doi = {10.5802/crmeca.237}, language = {en}, }
Claude Stolz. On bounds of the effective behavior of particulate composites with imperfect interface. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 39-54. doi : 10.5802/crmeca.237. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.237/
[1] A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140 | DOI | MR | Zbl
[2] Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, Volume 25 (1977), pp. 185-202 | DOI | Zbl
[3] Variational and related methods for the overall properties of composites, Adv. Appl. Mech., Volume 21 (1981), pp. 1-78 | DOI | MR | Zbl
[4] On bounds for the overall elastic moduli of inhomogeneous systems—I, J. Mech. Phys. Solids, Volume 14 (1966), pp. 151-162 | DOI | Zbl
[5] Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces, J. Mech. Phys. Solids, Volume 59 (2011) no. 7, pp. 1413-1426 | DOI | MR | Zbl
[6] Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. Mater., Volume 33 (2001), pp. 309-323 | DOI
[7] Elastic behavior of composites containing multi-layer coated particles with imperfect interface bonding conditions and application to size effects and mismatch in these composites, Int. J. Solids Struct., Volume 51 (2014) no. 15-16, pp. 2865-2877 | DOI | Zbl
[8] Thermoelastic properties of particulate composites with imperfect interface, J. Mech. Phys. Solids, Volume 39 (1991) no. 6, pp. 745-762 | DOI | MR
[9] Bounds on the effective thermal conductivity of composites with imperfect interface, Int. J. Eng. Sci., Volume 48 (2010) no. 9, pp. 783-794 | DOI | Zbl
[10] Extended general interfaces: Mori-–Tanaka homogenization and average fields, Int. J. Solids Struct., Volume 254-255 (2022), 111933 | DOI
[11] Combined variational approach and morphological analysis to the behaviour of inhomogeneous elastic media, C. R. Acad. Sci., Sér. IIA Earth Planet. Sci., Volume 312 (1991) no. 3, pp. 143-150 | Zbl
[12] Morphologically representative pattern-based bounding in elasticity, J. Mech. Phys. Solids, Volume 44 (1996) no. 3, pp. 307-331 | DOI | MR | Zbl
[13] Hashin–-Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects, Comput. Mater. Sci., Volume 48 (2010), pp. 589-596 | DOI
[14] Hashin–Shtrikman bounds on the shear modulus of a nanocomposite with spherical inclusions and interface effects, Comput. Mater. Sci., Volume 50 (2010), pp. 403-410 | DOI | Zbl
[15] Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids, Volume 53 (2005) no. 7, pp. 1574-1596 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy