Three Finite Volume schemes are proposed in this note to satisfy the maximum principle for the mass fraction , solution of an unsteady balance equation, including a relative velocity between phases and a source term. The continuous maximum principle is examined first. Then, linear implicit discrete schemes are detailed in a multi-dimensional and unstructured framework.
Dans cette note, trois schémas Volumes Finis sont proposés pour respecter le principe du maximum du titre massique, solution d’une équation de bilan instationnaire, incluant un déséquilibre en vitesse avec une vitesse relative non nulle et un terme source. Le principe du maximum continu est d’abord étudié puis les schémas discrets linéaires implicites sont détaillés dans un cadre multi-dimensionnel non structuré.
Revised:
Accepted:
Published online:
Mot clés : Principe du maximum, schéma Volumes Finis, écoulement diphasique, déséquilibre en vitesse
Gauthier Lazare 1, 2; Qingqing Feng 1; Philippe Helluy 2; Jean-Marc Hérard 1, 3; Frank Hulsemann 1; Stéphane Pujet 1
@article{CRMECA_2024__352_G1_81_0, author = {Gauthier Lazare and Qingqing Feng and Philippe Helluy and Jean-Marc H\'erard and Frank Hulsemann and St\'ephane Pujet}, title = {Maximum principle for the mass fraction in a system with two mass balance equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {81--98}, publisher = {Acad\'emie des sciences, Paris}, volume = {352}, year = {2024}, doi = {10.5802/crmeca.244}, language = {en}, }
TY - JOUR AU - Gauthier Lazare AU - Qingqing Feng AU - Philippe Helluy AU - Jean-Marc Hérard AU - Frank Hulsemann AU - Stéphane Pujet TI - Maximum principle for the mass fraction in a system with two mass balance equations JO - Comptes Rendus. Mécanique PY - 2024 SP - 81 EP - 98 VL - 352 PB - Académie des sciences, Paris DO - 10.5802/crmeca.244 LA - en ID - CRMECA_2024__352_G1_81_0 ER -
%0 Journal Article %A Gauthier Lazare %A Qingqing Feng %A Philippe Helluy %A Jean-Marc Hérard %A Frank Hulsemann %A Stéphane Pujet %T Maximum principle for the mass fraction in a system with two mass balance equations %J Comptes Rendus. Mécanique %D 2024 %P 81-98 %V 352 %I Académie des sciences, Paris %R 10.5802/crmeca.244 %G en %F CRMECA_2024__352_G1_81_0
Gauthier Lazare; Qingqing Feng; Philippe Helluy; Jean-Marc Hérard; Frank Hulsemann; Stéphane Pujet. Maximum principle for the mass fraction in a system with two mass balance equations. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 81-98. doi : 10.5802/crmeca.244. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.244/
[1] Discrete Maximum Principle for Finite-Difference Operators, Aequationes Math., Volume 4 (1970), pp. 338-352 | DOI | MR | Zbl
[2] Finite volume methods, Solution of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3) (Handbook of Numerical Analysis), Volume 7, Elsevier, 2000, pp. 713-1018 | DOI | Zbl
[3] 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids, Finite Volumes for Complex Applications VI: Problems & Perspectives (Springer Proceedings in Mathematics), Volume 4, Springer (2011), pp. 895-930 | Zbl
[4] Maximum principle and local mass balance for numerical solutions of transport equation coupled with variable density flow, Acta Math. Univ. Comen., New Ser., Volume 67 (1998), pp. 137-157 | MR | Zbl
[5] An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model, ESAIM, Math. Model. Numer. Anal., Volume 44 (2010) no. 2, pp. 251-287 | DOI | Numdam | MR | Zbl
[6] A discretization of phase mass balance in fractional step algorithms for the drift-flux model, IMA J. Numer. Anal., Volume 31 (2011) no. 1, pp. 116-146 | DOI | MR | Zbl
[7] Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations, Ann. Math., Volume 20 (1919) no. 4, pp. 292-296 | DOI | MR
[8] How to preserve the mass fractions positivity when computing compressible multi-component flows (1989) no. RR-1080 https://inria.hal.science/inria-00075479 (Research Report)
[9] Existence and positivity results for the - and a modified two-equation turbulence models, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 2, pp. 195-215 | DOI | MR | Zbl
[10] Minimal stencil finite volume scheme with the discrete maximum principle, Russ. J. Numer. Anal. Math. Model., Volume 27 (2012) no. 4, pp. 369-386 | DOI | MR | Zbl
[11] Matrix Iterative Analysis, Springer Series in Computational Mathematics, 27, Springer Berlin, Heiderlberg, 2009 | Zbl
[12] Average Volumetric Concentration in Two-Phase Flow Systems, J. Heat Transfer, Volume 87 (1965) no. 4, pp. 453-468 | DOI
Cited by Sources:
Comments - Policy