Comptes Rendus
Research article
Maximum principle for the mass fraction in a system with two mass balance equations
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 81-98.

Three Finite Volume schemes are proposed in this note to satisfy the maximum principle for the mass fraction y, solution of an unsteady balance equation, including a relative velocity between phases and a source term. The continuous maximum principle is examined first. Then, linear implicit discrete schemes are detailed in a multi-dimensional and unstructured framework.

Dans cette note, trois schémas Volumes Finis sont proposés pour respecter le principe du maximum du titre massique, solution d’une équation de bilan instationnaire, incluant un déséquilibre en vitesse avec une vitesse relative non nulle et un terme source. Le principe du maximum continu est d’abord étudié puis les schémas discrets linéaires implicites sont détaillés dans un cadre multi-dimensionnel non structuré.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.244
Keywords: maximum principle, Finite Volume scheme, two-phase flow, non-equilibrium velocity
Mot clés : Principe du maximum, schéma Volumes Finis, écoulement diphasique, déséquilibre en vitesse

Gauthier Lazare 1, 2; Qingqing Feng 1; Philippe Helluy 2; Jean-Marc Hérard 1, 3; Frank Hulsemann 1; Stéphane Pujet 1

1 EDF R&D Chatou - 6 quai Waltier, 78400, Chatou, France.
2 IRMA, UMR 7501, 7 rue Descartes, 67000 Strasbourg, France.
3 I2M - Institut de Mathématiques de Marseille, Aix Marseille Université, France.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2024__352_G1_81_0,
     author = {Gauthier Lazare and Qingqing Feng and Philippe Helluy and Jean-Marc H\'erard and Frank Hulsemann and St\'ephane Pujet},
     title = {Maximum principle for the mass fraction in a system with two mass balance equations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {81--98},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.244},
     language = {en},
}
TY  - JOUR
AU  - Gauthier Lazare
AU  - Qingqing Feng
AU  - Philippe Helluy
AU  - Jean-Marc Hérard
AU  - Frank Hulsemann
AU  - Stéphane Pujet
TI  - Maximum principle for the mass fraction in a system with two mass balance equations
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 81
EP  - 98
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.244
LA  - en
ID  - CRMECA_2024__352_G1_81_0
ER  - 
%0 Journal Article
%A Gauthier Lazare
%A Qingqing Feng
%A Philippe Helluy
%A Jean-Marc Hérard
%A Frank Hulsemann
%A Stéphane Pujet
%T Maximum principle for the mass fraction in a system with two mass balance equations
%J Comptes Rendus. Mécanique
%D 2024
%P 81-98
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.244
%G en
%F CRMECA_2024__352_G1_81_0
Gauthier Lazare; Qingqing Feng; Philippe Helluy; Jean-Marc Hérard; Frank Hulsemann; Stéphane Pujet. Maximum principle for the mass fraction in a system with two mass balance equations. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 81-98. doi : 10.5802/crmeca.244. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.244/

[1] P. G. Ciarlet Discrete Maximum Principle for Finite-Difference Operators, Aequationes Math., Volume 4 (1970), pp. 338-352 | DOI | MR | Zbl

[2] R. Eymard; T. Gallouët; R. Herbin Finite volume methods, Solution of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3) (Handbook of Numerical Analysis), Volume 7, Elsevier, 2000, pp. 713-1018 | DOI | Zbl

[3] R. Eymard; G. Henry; R. Herbin; F. Hubert; R. Klöfkorn; G. Manzini 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids, Finite Volumes for Complex Applications VI: Problems & Perspectives (Springer Proceedings in Mathematics), Volume 4, Springer (2011), pp. 895-930 | Zbl

[4] P. Frolkovič Maximum principle and local mass balance for numerical solutions of transport equation coupled with variable density flow, Acta Math. Univ. Comen., New Ser., Volume 67 (1998), pp. 137-157 | MR | Zbl

[5] L. Gastaldo; R. Herbin; J.-C. Latché An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model, ESAIM, Math. Model. Numer. Anal., Volume 44 (2010) no. 2, pp. 251-287 | DOI | Numdam | MR | Zbl

[6] L. Gastaldo; R. Herbin; J.-C. Latché A discretization of phase mass balance in fractional step algorithms for the drift-flux model, IMA J. Numer. Anal., Volume 31 (2011) no. 1, pp. 116-146 | DOI | MR | Zbl

[7] T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations, Ann. Math., Volume 20 (1919) no. 4, pp. 292-296 | DOI | MR

[8] B. Larrouturou How to preserve the mass fractions positivity when computing compressible multi-component flows (1989) no. RR-1080 https://inria.hal.science/inria-00075479 (Research Report)

[9] R. Lewandowski; B. Mohammadi Existence and positivity results for the φ-θ and a modified k-ε two-equation turbulence models, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 2, pp. 195-215 | DOI | MR | Zbl

[10] K. Lipnikov; D. Svyatskiy; Yu. Vassilevski Minimal stencil finite volume scheme with the discrete maximum principle, Russ. J. Numer. Anal. Math. Model., Volume 27 (2012) no. 4, pp. 369-386 | DOI | MR | Zbl

[11] R. S. Varga Matrix Iterative Analysis, Springer Series in Computational Mathematics, 27, Springer Berlin, Heiderlberg, 2009 | Zbl

[12] N. Zuber; J. A. Findlay Average Volumetric Concentration in Two-Phase Flow Systems, J. Heat Transfer, Volume 87 (1965) no. 4, pp. 453-468 | DOI

Cited by Sources:

Comments - Policy