Comptes Rendus
Research article
A physically-based formulation for texture evolution during dynamic recrystallization. A case study of ice
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 99-134.

Dynamic recrystallization can have a strong impact on texture development during the deformation of polycrystalline materials at high temperatures, particularly for materials with strong viscoplastic anisotropy such as ice. Owing to this anisotropy, recrystallization is essential for ensuring strain compatibility, and the development of textures leads to anisotropic softening. Accurate prediction of the effect of recrystallization on the texture evolution of ice is therefore crucial to adequately account for texture-induced mechanical anisotropy in large-scale models of glacial ice flow. However, this prediction remains a challenge.

We propose a new formulation for modeling texture evolution due to dynamic recrystallization on the basis of observations of the evolution of the microstructure and texture of ice deforming by dislocation creep and dynamic recrystallization. This formulation relies on an orientation attractor that maximizes the resolved shear stress on the easiest slip system in the crystal. It is implemented in the equation describing the evolution of the crystal orientation with deformation and is coupled with an anisotropic viscoplastic law that provides the mechanical response of the ice crystal. This set of equations, which is the core of the R 3 iCe model is solved by a finite-element method with a semi-implicit scheme coded using the Rheolef library. The resulting open-source software R 3 iCe is validated by comparison with laboratory creep data for ice polycrystals under uniaxial compression, simple shear, and uniaxial tension. It correctly reproduces the texture evolution and mechanical softening observed in the experiment during tertiary creep. Although the present formulation is too time-consuming for direct implementation in large-scale ice flow models, R 3 iCe can be used to adjust the parameterization used to implement texture-induced anisotropy in these models. The validation was performed for ice, but the R 3 iCe implementation is generic and applies to any material whose behavior may be adequately described using an anisotropic flow law.

La recristallisation dynamique peut avoir un impact important sur le développement des textures pendant la déformation des matériaux polycristallins à haute température, en particulier pour les matériaux présentant une forte anisotropie viscoplastique comme la glace. En raison de cette anisotropie, la recristallisation est essentielle pour assurer la compatibilité des déformations et le développement des textures conduit à un adoucissement anisotrope. Une prédiction précise de l’effet de la recristallisation sur l’évolution de la texture de la glace est donc cruciale pour tenir compte de l’anisotropie mécanique induite par la texture dans les modèles à grande échelle de l’écoulement de la glace. Pourtant, cette prédiction reste un défi.

Nous proposons une nouvelle formulation pour modéliser l’évolution de la texture due à la recristallisation dynamique, basée sur des observations de l’évolution de la microstructure et de la texture de la glace se déformant par fluage de dislocations et recristallisation dynamique. Cette formulation repose sur un attracteur d’orientation qui maximise la contrainte de cisaillement résolue sur le système de glissement le plus facile dans le cristal. Elle est mise en œuvre dans l’équation décrivant l’évolution de l’orientation du cristal avec la déformation et couplée à une loi viscoplastique anisotrope qui fournit la réponse mécanique du cristal de glace. Cet ensemble d’équations, qui constitue le cœur du modèle R3iCe, est résolu par une méthode d’éléments finis avec un schéma semi-implicite codé à l’aide de la bibliothèque Rheolef. Le logiciel libre R3iCe qui en résulte est validé par comparaison avec des données de fluage en laboratoire pour des polycristaux de glace soumis à une compression uniaxiale, à un cisaillement simple et à une tension uniaxiale. Il reproduit correctement l’évolution de la texture et l’adoucissement mécanique observés lors de l’expérience pendant le fluage tertiaire. Bien que la formulation actuelle soit trop coûteuse en temps pour une mise en œuvre directe dans des modèles d’écoulement de glace à grande échelle, R3iCe peut être utilisé pour ajuster la paramétrisation utilisée pour mettre en œuvre l’anisotropie induite par la texture dans ces modèles. La validation a été effectuée pour la glace, mais l’implémentation de R3iCe est générique et s’applique à tout matériau dont le comportement peut être décrit de manière adéquate à l’aide d’une loi d’écoulement anisotrope.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.243
Keywords: dynamic recrystallization, texture, viscoplastic anisotropy, finite-element method, ice
Mots-clés : recristallisation dynamique, texture, anisotropie viscoplastique, méthode des éléments finis, glace

Thomas Chauve 1; Maurine Montagnat 1, 2; Véronique Dansereau 3; Pierre Saramito 4; Kévin Fourteau 5; Andréa Tommasi 6

1 Univ. Grenoble Alpes, CNRS, IRD, G-INP, IGE, Grenoble, France.
2 Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France.
3 Institut des Sciences de la Terre, Université Grenoble Alpes, CNRS (5275), Grenoble, France.
4 Lab. Jean Kuntzmann, CNRS, Université Grenoble-Alpes, F-38041 Grenoble, France.
5 Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France
6 Géosciences Montpellier - CNRS, Université de Montpellier, France.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2024__352_G1_99_0,
     author = {Thomas Chauve and Maurine Montagnat and V\'eronique Dansereau and Pierre Saramito and K\'evin Fourteau and Andr\'ea Tommasi},
     title = {A physically-based formulation for texture evolution during dynamic recrystallization. {A~case} study of ice},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {99--134},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.243},
     language = {en},
}
TY  - JOUR
AU  - Thomas Chauve
AU  - Maurine Montagnat
AU  - Véronique Dansereau
AU  - Pierre Saramito
AU  - Kévin Fourteau
AU  - Andréa Tommasi
TI  - A physically-based formulation for texture evolution during dynamic recrystallization. A case study of ice
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 99
EP  - 134
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.243
LA  - en
ID  - CRMECA_2024__352_G1_99_0
ER  - 
%0 Journal Article
%A Thomas Chauve
%A Maurine Montagnat
%A Véronique Dansereau
%A Pierre Saramito
%A Kévin Fourteau
%A Andréa Tommasi
%T A physically-based formulation for texture evolution during dynamic recrystallization. A case study of ice
%J Comptes Rendus. Mécanique
%D 2024
%P 99-134
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.243
%G en
%F CRMECA_2024__352_G1_99_0
Thomas Chauve; Maurine Montagnat; Véronique Dansereau; Pierre Saramito; Kévin Fourteau; Andréa Tommasi. A physically-based formulation for texture evolution during dynamic recrystallization. A case study of ice. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 99-134. doi : 10.5802/crmeca.243. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.243/

[1] R. B. Alley Fabrics in polar ice sheets - Development and prediction, Science, Volume 240 (1988), pp. 493-495 | DOI

[2] N. Azuma A flow law for anisotropic polycrystalline ice under uniaxial compressive deformation, Cold Reg. Sci. Technol., Volume 23 (1995), pp. 137-147 | DOI

[3] J. P. Boehler; L. E. Aoufi; J. Raclin On Experimental Testing Methods for Anisotropic Materials, Res Mech., Volume 21 (1987), pp. 73-95

[4] J. L. Bouchez; P. Duval The fabric of polycrystalline ice deformed in simple shear: experiments in torsion, natural deformation and geometrical interpretation, Textures and microstructures, Volume 5 (1982), pp. 171-190 | DOI

[5] A. Burr; W. Noël; P. Trecourt; M. Bourcier; F. Gillet-Chaulet; A. Philip; C. L. Martin The anisotropic contact response of viscoplastic monocrystalline ice particles, Acta Mater., Volume 132 (2017), pp. 576-585 | DOI

[6] W. F. Budd; R. C. Warner; T. H. Jacka; J. Li; A. Treverrow Ice flow relations for stress and strain-rate components from combined shear and compression laboratory experiments, J. Glaciol., Volume 59 (2013) no. 214, pp. 374-392 | DOI

[7] J. P Burg; C. J. L Wilson; J. C. Mitchell Dynamic recrystallization and fabric development during the simple shear deformation of ice, J. Struct. Geol., Volume 8 (1986) no. 8, pp. 857-870 | DOI

[8] O. Castelnau; P. Duval; R. A. Lebensohn; G. Canova Viscoplastic modeling of texture development in polycrystalline ice with a self-consistent approach: Comparison with bound estimates, J. Geophys. Res., Volume 101 (1996) no. 6, pp. 13851-13868 | DOI

[9] T. Chauve; M. Montagnat; F. Barou; K. Hidas; A. Tommasi; D. Mainprice Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD, Philos. Trans. R. Soc. Lond., Ser. A, Volume 375 (2017) no. 2086, 20150345 | DOI

[10] T. Chauve; M. Montagnat; C. Lachaud; D. Georges; P. Vacher Strain field evolution at the ductile-to-brittle transition: a case study on ice, Solid Earth, Volume 8 (2017) no. 5, pp. 943-953 | DOI

[11] T. Chauve; M. Montagnat; S. Piazolo; B. Journaux; J. Wheeler; F. Barou; D. Mainprice; A. Tommasi Non-basal dislocations should be accounted for in simulating ice mass flow, Earth Planet. Sci. Lett., Volume 473 (2017), pp. 247-255 | DOI

[12] T. Chauve; M. Montagnat; P. Vacher Strain field evolution during dynamic recrystallization nucleation; A case study on ice, Acta Mater., Volume 101 (2015), pp. 116-124 | DOI

[13] O. Castelnau; H. Shoji; A. Mangeney; H. Milsch; P. Duval; A. Miyamoto; K. Kawada; O. Watanabe Anisotropic behavior of GRIP ices and flow in Central Greenland, Earth Planet. Sci. Lett., Volume 154 (1998) no. 1-4, pp. 307-322 | DOI

[14] O. Castelnau; T. Thorsteinsson; J. Kipfstuhl; P. Duval; G. R. Canova Modelling fabric development along the GRIP ice core, central Greenland, Ann. Glaciol., Volume 23 (1996), pp. 194-201 | DOI

[15] P. Duval; M. F. Ashby; I. Anderman Rate controlling processes in the creep of polycrystalline ice, J. Phys. Chem., Volume 87 (1983) no. 21, pp. 4066-4074 | DOI

[16] R. D. Doherty; D. A. Hughes; F. J. Humphreys; J. J. Jonas; D. Juul Jensen; M. E. Kassner; W. E. King; T. R. McNelley; H. J. McQueen; A. D. Rollett Current issues in recrystallization: a review, Mater. Sci. Eng. A, Volume 238 (1997) no. 2, pp. 219-274 | DOI

[17] P. Duval Creep and recrystallization of polycrystalline ice, Bull. Minéral., Volume 102 (1979), pp. 80-85 | DOI

[18] P. Duval Creep and Fabrics of Polycrystalline Ice Under Shear and Compression, J. Glaciol., Volume 27 (1981) no. 95, pp. 129-140 | DOI

[19] O. Gagliardini Simulation numérique de l’écoulement bidimensionnel de glace polaire présentant une anisotropie induite évolutive, Ph. D. Thesis, Université Joseph-Fourier, Grenoble, France (1999)

[20] F. Gillet-Chaulet; O. Gagliardini; J. Meyssonnier; M. Montagnat; O. Castelnau A user-friendly anisotropic flow law for ice-sheet modelling, J. Glaciol., Volume 41 (2005) no. 172, pp. 3-14 | DOI

[21] F. Gillet-Chaulet; O. Gagliardini; J. Meyssonnier; T. Zwinger; J. Ruokolainen Flow-induced anisotropy in polar ice and related ice-sheet flow modelling, J. Non-Newton. Fluid Mech., Volume 134 (2006), pp. 33-43 | DOI

[22] O. Gagliardini; F. Gillet-Chaulet; M. Montagnat A review of anisotropic polar ice models: from crystal to ice-sheet flow models, Low Temperature Science, Volume 68 (2009) no. Supplement, pp. 149-166

[23] G. Gödert; K. Hutter Induced anisotropy in large ice shields: Theory and its homogenization, Contin. Mech. Thermodyn., Volume 10 (1998), pp. 293-318 | DOI

[24] F. Gillet-Chaulet Modélisation de l’écoulement de la glace polaire anisotrope et premières applications au forage de Dôme C., Ph. D. Thesis, Université Joseph Fourier-Grenoble I, Grenoble, France (2006)

[25] J. W. Glen Experiments on the Deformation of Ice, J. Glaciol., Volume 2 (1952) no. 12, pp. 111-114 | DOI

[26] F. Grennerat; M. Montagnat; O. Castelnau; P. Vacher; H. Moulinec; P. Suquet; P. Duval Experimental characterization of the intragranular strain field in columnar ice during transient creep, Acta Mater., Volume 60 (2012) no. 8, pp. 3655-3666 | DOI

[27] J. W. Glen; M. F. Perutz The Growth and Deformation of Ice Crystals, J. Glaciol., Volume 2 (1954) no. 16, pp. 397-403 | DOI

[28] F. J. Humphreys; M. Hatherly Recrystallization and related annealing phenomena, Pergamon Press, 2004

[29] F. J. Humphreys; M. Hatherly Recrystallization and related annealing phenomena, Pergamon Press, 1996

[30] P. J. Hudleston Progressive development of fabrics across zones of shear in glacial ice, Energetics of Geological Processes (S. K. Saxena; S. Bhattacharji, eds.), Springer (1977), pp. 121-150 | DOI

[31] T. H. Jacka The time and strain required for development of minimum strain rates in ice, Cold Reg. Sci. Technol., Volume 8 (1984) no. 3, pp. 261-268 | DOI

[32] T. H. Jacka; W. F. Budd The use of tertiary creep rates in ice at high strains in compression and shear, Ice-Structure Interaction: IUTAM/IAHR Symposium St. John’s, Newfoundland Canada 1989 (International Union of Theoretical and Applied Mechanics), Springer (1991), pp. 21-35 | DOI

[33] B. Journaux; T. Chauve; M. Montagnat; A. Tommasi; F. Barou; D. Mainprice; L. Gest Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear, Cryosphere, Volume 13 (2019) no. 5, pp. 1495-1511 | DOI

[34] T. H. Jacka; Li Jun The steady-state crystal size of deforming ice, Ann. Glaciol., Volume 20 (1994), pp. 13-18 | DOI

[35] Li Jun; T. H. Jacka Horizontal shear rate of ice initially exhibiting vertical compression fabrics, J. Glaciol., Volume 44 (1998) no. 148, pp. 670-672 | DOI

[36] T. H. Jacka; M. Maccagnan Ice crystallographic and strain rate changes with strain in compression and extension, Cold Reg. Sci. Technol., Volume 8 (1984), pp. 269-286 | DOI

[37] B. Kamb Experimental recrystallization of ice under stress, Flow and Fracture of Rocks (H. C. Heard; I. Y. Borg; N. L. Carter; C. B. Raleigh, eds.) (Geophysical Monograph Series), Volume 16, American Geophysical Union, 1972, pp. 211-241 | DOI

[38] P. Kalifa; G. Ouillon; P. Duval Microcracking and the failure of polycrystalline ice under triaxial compression, J. Glaciol., Volume 38 (1992) no. 128, pp. 65-76 | DOI

[39] Maria-Gema Llorens; Albert Griera; Paul D. Bons; Ricardo A. Lebensohn; Lynn A. Evans; Daniela Jansen; Ilka Weikusat Full-field predictions of ice dynamic recrystallisation under simple shear conditions, Earth Planet. Sci. Lett., Volume 450 (2016), pp. 233-242 | DOI

[40] J. Li; T. H. Jacka; W. F. Budd Deformation rates in combined compression and shear for ice which is initially isotropic and after the development of strong anisotropy, Ann. Glaciol., Volume 23 (1996) no. 1, pp. 247-252 | DOI

[41] L. Lliboutry Anisotropic, transversely isotropic nonlinear viscosity of rock ice and rheolocical parameters inferred from homogenization, Int. J. Plast., Volume 9 (1993), pp. 619-632 | DOI

[42] M. Montagnat; D. Buiron; L. Arnaud; A. Broquet; P. Schlitz; R. Jacob; S. Kipfstuhl Measurements and numerical simulation of fabric evolution along the Talos Dome ice core, Antarctica, Earth Planet. Sci. Lett., Volume 357-358 (2012), pp. 168-178 | DOI

[43] M. Mellor; D. M. Cole Deformation and failure of ice under constant stress or constant strain-rate, Cold Reg. Sci. Technol., Volume 5 (1982) no. 3, pp. 201-219 | DOI

[44] M. Montagnat; T. Chauve; F. Barou; A. Tommasi; B. Beausir; C. Fressengeas Analysis of dynamic recrystallization of ice from EBSD orientation mapping, Front. Earth Sci., Volume 3 (2015), 81, pp. 1-13 | DOI

[45] Carlos Martín; G. Hilmar Gudmundsson; Hamish D. Pritchard; Olivier Gagliardini On the effects of anisotropic rheology on ice flow, internal structure, and the age-depth relationship at ice divides, J. Geophys. Res. Earth Surf., Volume 114 (2009) no. F4, F04001 | DOI

[46] Y. Ma; O. Gagliardini; C. Ritz; F. Gillet-Chaulet; G. Durand; M. Montagnat Enhancement factors for grounded ice and ice shelves inferred from an anisotropic ice-flow model, J. Glaciol., Volume 56 (2010) no. 199, pp. 805-812 | DOI

[47] P. Mansuy; J. Meyssonnier; A. Philip Localization of deformation in polycrystalline ice: experiments and numerical simulations with a simple grain model, Comput. Mater. Sci., Volume 25 (2002) no. 1-2, pp. 142-150 | DOI

[48] B. M. Minchew; C. R. Meyer; A. A. Robel; G. H. Gudmundsson; M. Simons Processes controlling the downstream evolution of ice rheology in glacier shear margins: case study on Rutford Ice Stream, West Antarctica, J. Glaciol., Volume 64 (2018) no. 246, pp. 583-594 | DOI

[49] J. Meyssonnier; A. Philip A model for the tangent viscous behaviour of anisotropic polar ice, Ann. Glaciol., Volume 23 (1996), pp. 253-261 | DOI

[50] F. S. McCormack; R. C. Warner; H. Seroussi; C. F. Dow; J. L. Roberts; A. Treverrow Modeling the Deformation Regime of Thwaites Glacier, West Antarctica, Using a Simple Flow Relation for Ice Anisotropy (ESTAR), J. Geophys. Res. Earth Surf., Volume 127 (2022) no. 3, e2021JF006332 | DOI

[51] S. Piazolo; M. Montagnat; F. Grennerat; H. Moulinec; J. Wheeler Effect of local stress heterogeneities on dislocation fields: Examples from transient creep in polycrystalline ice, Acta Mater., Volume 90 (2015), pp. 303-309 | DOI

[52] J.-P. Poirier Creep of crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge Earth Science Series, Cambridge University Press, 1985

[53] E. C. Pettit; T. Thorsteinsson; P. Jacobson; E. D. Waddington The role of crystal fabric in flow near an ice divide, J. Glaciol., Volume 53 (2007) no. 181, pp. 277-288 | DOI

[54] S. Piazolo; C. J. L. Wilson; V. Luzin; C. Brouzet; M. Peternell Dynamics of ice mass deformation: Linking processes to rheology, texture, and microstructure, Geochemistry, Geophys. Geosystems, Volume 14 (2013) no. 10, pp. 4185-4194 | DOI

[55] R. Quey; P. R. Dawson; F. Barbe Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Eng., Volume 200 (2011) no. 17-20, pp. 1729-1745 | DOI

[56] C. Qi; D. L. Goldsby; D. J. Prior The down-stress transition from cluster to cone fabrics in experimentally deformed ice, Earth Planet. Sci. Lett., Volume 471 (2017), pp. 136-147 | DOI

[57] C. Qi; D. J. Prior; L. Craw; S. Fan; M.-G. Llorens; A. Griera; M. Negrini; P. D. Bons; D. L. Goldsby Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures, Cryosphere, Volume 13 (2019) no. 1, pp. 351-371 | DOI

[58] N. M. Rathmann; C. S. Hvidberg; A. Grinsted; D. A. Lilien; D. Dahl-Jensen Effect of an orientation-dependent non-linear grain fluidity on bulk directional enhancement factors, J. Glaciol., Volume 67 (2021) no. 263, pp. 569-575 | DOI

[59] N. M. Rathmann; D. A. Lilien Inferred basal friction and mass flux affected by crystal-orientation fabrics, J. Glaciol., Volume 68 (2021) no. 268, pp. 236-252 | DOI

[60] D. H. M. Richards; S. Pegler; S. Piazolo Ice fabrics in two-dimensional flows: beyond pure and simple shear, Cryosphere, Volume 16 (2022) no. 10, pp. 4571-4592 | DOI

[61] D. H. M. Richards; S. Pegler; S. Piazolo; O. G. Harlen The evolution of ice fabrics: A continuum modelling approach validated against laboratory experiments, Earth Planet. Sci. Lett., Volume 556 (2021), 116718 | DOI

[62] P. Saramito Efficient C++ finite element computing with Rheolef (2023), p. 279 (https://cel.hal.science/cel-00573970v15)

[63] T. Sakai; A. Belyakov; R. Kaibyshev; H. Miura; J. J. Jonas Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., Volume 60 (2014), pp. 130-207 | DOI

[64] E. C. Smith; A. F. Baird; J. M. Kendall; C. Martín; R. S. White; A. M. Brisbourne; A. M. Smith Ice fabric in an Antarctic ice stream interpreted from seismic anisotropy, Geophys. Res. Lett., Volume 44 (2017) no. 8, pp. 3710-3718 | DOI

[65] B. Svendsen; K. Hutter A continuum approach for modelling induced anisotropy in glaciers and ice sheets, Ann. Glaciol., Volume 23 (1996), pp. 262-269 | DOI

[66] P. Suquet; H. Moulinec; O. Castelnau; M. Montagnat; N. Lahellec; F. Grennerat; P. Duval; R. Brenner Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep, Procedia IUTAM, Volume 3 (2012), pp. 76-90 | DOI

[67] D. Samyn; A. Svensson; S. J. Fitzsimons Dynamic implications of discontinuous recrystallization in cold basal ice: Taylor Glacier, Antarctica, J. Geophys. Res. Earth Surf., Volume 113 (2008) no. F3, F03S90 | DOI

[68] A. Treverrow; W. F. Budd; T. H. Jacka; R. C. Warner The tertiary creep of polycrystalline ice: experimental evidence for stress-dependent levels of strain-rate enhancement, J. Glaciol., Volume 58 (2012) no. 208, pp. 301-314 | DOI

[69] T. Thorsteinsson An analytical approach to deformation of anisotropic ice-crystal aggregates, J. Glaciol., Volume 47 (2001) no. 158, pp. 507-516 | DOI

[70] T. Thorsteinsson; J. Kipfstuhl; H. Miller Textures and fabrics in the GRIP ice core, J. Geophys. Res., Volume 102 (1997) no. C12, pp. 26583-26600 | DOI

[71] R. E. Thomas; M. Negrini; D. J. Prior; R. Mulvaney; H. Still; M. H. Bowman; L. Craw; S. Fan; B. Hubbard; C. Hulbe; D.g Kim; F. Lutz Microstructure and Crystallographic Preferred Orientations of an Azimuthally Oriented Ice Core from a Lateral Shear Margin: Priestley Glacier, Antarctica, Front. Earth Sci., Volume 9 (2021), 702213 | DOI

[72] H. R. Wenk; G. Canova; Y. Bréchet; L. Flandin A deformation-based model for recrystallization of anisotropic materials, Acta Mater., Volume 45 (1997) no. 8, pp. 3283-3296 | DOI

[73] N. H. Woodcock Specification of fabric shapes using an eigenvalue method, GSA Bulletin, Volume 88 (1977) no. 9, pp. 1231-1236

[74] H.-C. Wu Continuum mechanics and plasticity, Chapman & Hall; CRC Press, 2004 | DOI

[75] S. De la Chapelle; O. Castelnau; V. Ya. Lipenkov; P. Duval Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland, J. Geophys. Res., Volume 103 (1998) no. B3, pp. 5091-5105

Cited by Sources:

Comments - Policy