Comptes Rendus
Research article
Upper bounds estimates of the distance to cubic or orthotropic elasticity
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 169-200.

We address the problem, not of the determination–which usually needs numerical methods–but of an accurate analytical estimation of the distance of a raw elasticity tensor to cubic symmetry and to orthotropy. We point out that there are not one but several second-order tensors that carry the likely cubic/orthotropic coordinate system of the raw tensor. Since all the second-order covariants of an (exactly) cubic elasticity tensor are isotropic, distance estimates based only on such covariants are not always accurate. We extend to cubic symmetry and to orthotropy the technique recently suggested by Klimeš for transverse isotropy: solving analytically an auxiliary quadratic minimization problem whose solution is a second-order tensor that carries the likely cubic coordinate system. Numerical examples are provided, on which we evaluate the accuracy of different upper bounds estimates of the distance to cubic or orthotropic symmetry.

Nous abordons le problème, non pas de la détermination – qui nécessite généralement des méthodes numériques – mais d’une estimation analytique précise de la distance d’un tenseur d’élasticité brut à la symétrie cubique et à l’orthotropie. Nous soulignons qu’il n’y a pas un mais plusieurs tenseurs du second ordre qui portent le système de coordonnées cubique/orthotrope probable du tenseur brut. Étant donné que tous les covariants du second ordre d’un tenseur d’élasticité (exactement) cubique sont isotropes, les estimations de distance basées uniquement sur ces covariants ne sont pas précises. Nous étendons à la symétrie cubique et à l’orthotropie la technique récemment suggérée par Klimeš pour l’isotropie transverse : résoudre analytiquement un problème auxiliaire de minimisation quadratique dont la solution est un tenseur qui porte le système de coordonnées cubique probable. Des exemples numériques sont fournis, sur lesquels nous évaluons la précision de différentes estimations de bornes supérieures de la distance à la symétrie cubique ou orthotrope.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.246
Classification: 74B05, 74E10, 15A72, 58D19
Keywords: Symmetry class, Elasticity, Distance to a symmetry class, Cubic symmetry, Orthotropy, Upper bounds
Mot clés : Classe de symétrie, élasticité, distance à une classe de symétrie, symétrie cubique, orthotropie, bornes supérieures

Rodrigue Desmorat 1; Boris Kolev 1

1 Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2024__352_G1_169_0,
     author = {Rodrigue Desmorat and Boris Kolev},
     title = {Upper bounds estimates of the distance to cubic or orthotropic elasticity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {169--200},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.246},
     language = {en},
}
TY  - JOUR
AU  - Rodrigue Desmorat
AU  - Boris Kolev
TI  - Upper bounds estimates of the distance to cubic or orthotropic elasticity
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 169
EP  - 200
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.246
LA  - en
ID  - CRMECA_2024__352_G1_169_0
ER  - 
%0 Journal Article
%A Rodrigue Desmorat
%A Boris Kolev
%T Upper bounds estimates of the distance to cubic or orthotropic elasticity
%J Comptes Rendus. Mécanique
%D 2024
%P 169-200
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.246
%G en
%F CRMECA_2024__352_G1_169_0
Rodrigue Desmorat; Boris Kolev. Upper bounds estimates of the distance to cubic or orthotropic elasticity. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 169-200. doi : 10.5802/crmeca.246. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.246/

[1] S. Abramian; B. Desmorat; R. Desmorat; B. Kolev; M. Olive Recovering the Normal Form and Symmetry Class of an Elasticity Tensor, J. Elasticity, Volume 142 (2020), pp. 1-33 | DOI | Zbl

[2] A. Antonelli; B. Desmorat; B. Kolev; R. Desmorat Distance to plane elasticity orthotropy by Euler–Lagrange method, C. R. Mécanique, Volume 350 (2022), pp. 413-430 | DOI

[3] P. Azzi; R. Desmorat; B. Kolev; F. Priziac The distance to cubic symmetry class as a polynomial optimization problem, J. Elasticity (2023) | DOI

[4] V. Arsigny; P. Fillard; X. Pennec; N. Ayache Fast and Simple Calculus on Tensors in the Log-Euclidean Framework, Medical Image Computing and Computer-Assisted Intervention –- MICCAI 2005 (J. Duncan; G. Gerig, eds.) (Lecture Notes in Computer Science), Volume 3749, Springer, 2005, pp. 115-122 | DOI

[5] N. Auffray; B. Kolev; M. Petitot On anisotropic polynomial relations for the elasticity tensor, J. Elasticity, Volume 115 (2014) no. 1, pp. 77-103 | DOI | MR | Zbl

[6] R. Arts A study of general anisotropic elasticity in rocks by wave propagation, Ph. D. Thesis, University Pierre et Marie Curie, Paris 6, Paris France (1993)

[7] George Backus A geometrical picture of anisotropic elastic tensors, Rev. Geophys., Volume 8 (1970) no. 3, pp. 633-671 | DOI

[8] R. Baerheim Harmonic decomposition of the anisotropic elasticity tensor, Q. J. Mech. Appl. Math., Volume 46 (1993) no. 3, pp. 391-418 | DOI | Zbl

[9] T. Bohlke; A. Bertram The evolution of Hooke’s law due to texture development in FCC polycrystals, Int. J. Solids Struct., Volume 38 (2001) no. 01, pp. 9437-9459 | DOI | Zbl

[10] J.-P. Boehler; A. A. Kirillov Jr.; E. T. Onat On the polynomial invariants of the elasticity tensor, J. Elasticity, Volume 34 (1994) no. 2, pp. 97-110 | DOI | MR | Zbl

[11] J.-P. Boehler Introduction to the invariant formulation of anisotropic constitutive equations, Applications of tensor functions in solid mechanics (CISM Courses and Lectures), Volume 292, Springer, 1987, pp. 13-30 | DOI | MR

[12] S. C. Cowin The relationship between the elasticity tensor and the fabric tensor, Mech. Mater., Volume 4 (1985) no. 2, pp. 137-147 | DOI

[13] S. C. Cowin Properties of the anisotropic elasticity tensor, Q. J. Mech. Appl. Math., Volume 42 (1989), pp. 249-266 | DOI | Zbl

[14] R. Desmorat; N. Auffray; B. Desmorat; B. Kolev; M. Olive Generic separating sets for three-dimensional elasticity tensors, Proc. R. Soc. Lond., Ser. A, Volume 475 (2019), 190056 | DOI

[15] R. Desmorat; N. Auffray; B. Desmorat; M. Olive; B. Kolev Minimal Functional Bases for Elasticity Tensor Symmetry Classes, J. Elasticity, Volume 147 (2021) no. 1-2, pp. 201-228 | DOI | Zbl

[16] J. Dellinger Computing the optimal transversely isotropic approximation of a general elastic tensor, Geophysics, Volume 70 (2005) no. 5, pp. 11-20 | DOI

[17] J. Dellinger; D. Vasicek; C. Sondergeld Kelvin Notation for Stabilizing Elastic-Constant Inversion, Rev. Inst. Fr. Pét., Volume 53 (1998) no. 5, pp. 709-719 | DOI

[18] M. François; G. Geymonat; Y. Berthaud Determination of the symmetries of an experimentally determined stiffness tensor: Application to acoustic measurements, Int. J. Sol. Struct., Volume 35 (1998) no. 31-32, pp. 4091-4106 | DOI | Zbl

[19] M. Francois Détermination des symétries matérielles de matériaux anisotropes, Ph. D. Thesis, Université Paris 6 (Sorbonne Université), Paris, France (1995)

[20] A. Fredholm; J.-L. Strudel High Temperature Creep Mechanisms in Single Crystals of Some High Performance Nickel Base Superalloys, High Temperature Alloys, Springer, 1987, pp. 9-18 | DOI

[21] S. Forte; M. Vianello Symmetry classes for elasticity tensors, J. Elasticity, Volume 43 (1996) no. 2, pp. 81-108 | DOI | Zbl

[22] R. Hartshorne Deformation Theory, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | MR | Zbl

[23] E. Ihrig; M. Golubitsky Pattern selection with O(3) symmetry, Phys. D: Nonlinear Phenom., Volume 13 (1984) no. 1-2, pp. 1-33 | DOI | Zbl

[24] L. Klimeš Determination of the reference symmetry axis of a generally anisotropic medium which is approximately transversely isotropic, Stud. Geophys. Geodt., Volume 60 (2016) no. 3, pp. 391-402 | DOI

[25] L. Klimeš Reference transversely isotropic medium approximating a given generally anisotropic medium, Stud Geophys Geodt., Volume 62 (2018) no. 2, pp. 255-260 | DOI

[26] H. Kraft; C. Procesi Classical Invariant Theory, a Primer (1996) (Lectures notes avaiable at https://dmi.unibas.ch/de/personen/hanspeter-kraft/)

[27] M. Kochetov; M. A. Slawinski On obtaining effective orthotropic elasticity tensors, Q. J. Mech. Appl. Math., Volume 62 (2009) no. 2, pp. 149-166 | DOI | Zbl

[28] M. Kochetov; M. A. Slawinski On Obtaining Effective Transversely Isotropic Elasticity Tensors, J. Elasticity, Volume 94 (2009) no. 1, pp. 1-13 | DOI | Zbl

[29] L. Morin; P. Gilormini; K. Derrien Generalized Euclidean Distances for Elasticity Tensors, J. Elasticity, Volume 138 (2019) no. 2, pp. 221-232 | DOI | Zbl

[30] M. Moakher; A. N. Norris The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry, J. Elasticity, Volume 85 (2006) no. 3, pp. 215-263 | DOI | Zbl

[31] M. Olive; R. Desmorat Effective rationality of second-order symmetric tensor spaces, Ann. Mat. Pura Appl., Volume 201 (2021), pp. 313-334 | DOI | Zbl

[32] M. Olive; B. Kolev; N. Auffray A Minimal Integrity Basis for the Elasticity Tensor, Arch. Ration. Mech. Anal., Volume 226 (2017) no. 1, pp. 1-31 | DOI | Zbl

[33] M. Olive; B. Kolev; B. Desmorat; R. Desmorat Harmonic factorization and reconstruction of the elasticity tensor, J. Elasticity, Volume 132 (2018) no. 1, pp. 67-101 | DOI | MR | Zbl

[34] M. Olive; B. Kolev; R. Desmorat; B. Desmorat Characterization of the symmetry class of an elasticity tensor using polynomial covariants, Math. Mech. Solids, Volume 27 (2021) no. 1, pp. 144-190 | DOI | Zbl

[35] C. Oliver-Leblond; R. Desmorat; B. Kolev Continuous anisotropic damage as a twin modelling of discrete bi-dimensional fracture, Eur. J. Mech. A Solids, Volume 89 (2021), 104285 | DOI | Zbl

[36] T. M. Pollock; S. Tin Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties, J. Propul. Power, Volume 22 (2006) no. 2, pp. 361-374 | DOI

[37] R. C. Reed The Superalloys : Fundamentals and Applications, Cambridge University Press, 2006 | DOI

[38] O. Stahn; W. H. Müller; A. Bertram Distances of Stiffnesses to Symmetry Classes, J. Elasticity, Volume 141 (2020) no. 2, pp. 349-361 | DOI | Zbl

[39] B. Sturmfels Algorithms in Invariant Theory, Texts & Monographs in Symbolic Computation, Springer, Wien, New-York, 2008 | Zbl

[40] M. Vianello An integrity basis for plane elasticity tensors, Arch. Mech., Volume 49 (1997) no. 1, pp. 197-208 | MR | Zbl

[41] M. Weber; R. Glüge; A. Bertram Distance of a stiffness tetrad to the symmetry classes of linear elasticity, Int. J. Solids Struct., Volume 156-157 (2019), pp. 281-293 | DOI

[42] Q.-S. Zheng Theory of representations for tensor functions – A unified invariant approach to constitutive equations, Appl. Mech. Rev., Volume 47 (1994) no. 11, pp. 545-587 | DOI

Cited by Sources:

Comments - Policy