Comptes Rendus
Research article
Variational modeling adapted to the medium with gradient properties
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 159-168.

This study aims to develop a numerical homogenization method that can be applied to a heterogeneous stratified medium. Traditional scale transition methods are inadequate in capturing the essential gradient properties of some materials. Therefore, the focus of this work is to construct a homogenized model that considers the material property gradient. To achieve this, a two-step homogenization scheme is proposed. Firstly, the 3D model is decomposed into multiple 2D heterogeneous layers, and the behavior of each layer is estimated using a micro-mechanical model such as the Hashin–Shtrikman bounds. Secondly, a variational sum method is used to rebuild the behavior of the 3D environment. Finally, the method is applied to homogenize a thin plate with a porosity gradient.

Cette étude vise à développer une méthode d’homogénéisation numérique qui peut être appliquée à un milieu stratifié hétérogène. Les méthodes traditionnelles de transition d’échelle sont inadéquates pour capturer les propriétés essentielles de gradient de certains matériaux. Par conséquent, l’objectif de ce travail est de construire un modèle homogénéisé qui prenne en compte le gradient des propriétés du matériau. Pour ce faire, un schéma d’homogénéisation en deux étapes est proposé. Tout d’abord, le modèle 3D est décomposé en plusieurs couches hétérogènes 2D et le comportement de chaque couche est estimé à l’aide d’un modèle micromécanique tel que les bornes de Hashin–Shtrikman. Ensuite, une méthode de somme variationnelle est utilisée pour reconstruire le comportement de l’environnement 3D. Enfin, la méthode est appliquée à l’homogénéisation d’une plaque mince avec un gradient de porosité.

Received:
Accepted:
Published online:
DOI: 10.5802/crmeca.254

Azdine Nait-Ali 1; Sami Ben Elhaj Salah 1

1 Institut Pprime -UPR CNRS 3346 - Département Physique et Mécanique des Matériaux ENSMA - Téléport 2, 1er avenue Clément Ader BP 40109 F86961 Futuroscope Chasseneuil Cedex France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2024__352_G1_159_0,
     author = {Azdine Nait-Ali and Sami Ben Elhaj Salah},
     title = {Variational modeling adapted to the medium with gradient properties},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {159--168},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.254},
     language = {en},
}
TY  - JOUR
AU  - Azdine Nait-Ali
AU  - Sami Ben Elhaj Salah
TI  - Variational modeling adapted to the medium with gradient properties
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 159
EP  - 168
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.254
LA  - en
ID  - CRMECA_2024__352_G1_159_0
ER  - 
%0 Journal Article
%A Azdine Nait-Ali
%A Sami Ben Elhaj Salah
%T Variational modeling adapted to the medium with gradient properties
%J Comptes Rendus. Mécanique
%D 2024
%P 159-168
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.254
%G en
%F CRMECA_2024__352_G1_159_0
Azdine Nait-Ali; Sami Ben Elhaj Salah. Variational modeling adapted to the medium with gradient properties. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 159-168. doi : 10.5802/crmeca.254. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.254/

[1] K. E. Aifantis; J. R. Willis Scale effects induced by strain-gradient plasticity and interfacial resistance in periodic and randomly heterogeneous media, Mech. Mater., Volume 38 (2006), pp. 702-716 | DOI

[2] A. Braides Γ-Convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, 2002 | DOI | Zbl

[3] Z. Chang; M. Yang; J. Chen Experimental investigations on deformation characteristics in microstructure level during incremental forming of AA5052 sheet, J. Mater. Process. Technol., Volume 291 (2021) no. June 2020 | DOI

[4] S. ElhajSalah; A. Nait-Ali; M. Gueguen; C. Nadot-Martin Non-local modeling with asymptotic expansion homogenization of random materials, Mech. Mater., Volume 147 (2020) no. August 2020, 103459 | DOI

[5] A. C. Eringen Nonlocal polar elastic continua, Int. J. Eng. Sci., Volume 10 (1972) no. 1, pp. 1-16 | DOI | MR | Zbl

[6] G. Francfort; J.-J. Marigo Une approche variationnelle de la mécanique du défaut, ESAIM, Proc., Volume 6 (1999), pp. 57-74 | DOI | Zbl

[7] FoXTRoT: FFT-solver (2016) (https://sourcesup.renater.fr/www/foxtrot/html/)

[8] D. Gérard-Varet; A. Girodroux-Lavigne Homogenization of Stiff Inclusions Through Network Approximation, Netw. Heterog. Media, Volume 17 (2022) no. 2, pp. 163-202 | DOI | MR | Zbl

[9] S. Hémery; A. Nait-Ali; P. Villechaise Combination of in-situ SEM tensile test and FFT-based crystal elasticity simulations of Ti-6Al-4V for an improved description of the onset of plastic slip, Mech. Mater., Volume 109 (2017), pp. 1-10 | DOI

[10] Z. Hashin; S. Shtrikman A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963) no. 2, pp. 127-140 | DOI | MR | Zbl

[11] R. D. Mindlin; N. N. Eshel On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., Volume 4 (1968) no. 1, pp. 109-124 | DOI | Zbl

[12] G. Michaille; A. Nait-Ali; S. Pagano Two dimensional deterministic model of a thin body with randomly distributed high conductivity fibers, AMRX, Appl. Math. Res. Express, Volume 1 (2012), pp. 122-156 | DOI | Zbl

[13] H. Moulinec; P. Suquet A FFT-Based Numerical Method for Computing the Mechanical Properties of Composites from Images of their Microstructures, IUTAM Symposium on Microstructure-Property Interactions in Composite Materials (R. Pyrz, ed.) (Solid Mechanics and Its Applications), Volume 37, Springer (1995), pp. 235-246 | DOI

[14] H. Moulinec; P. Suquet A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998), pp. 69-94 | DOI | MR | Zbl

[15] A. Nait-Ali Volumic method for the variational sum of a 2D discrete model, C. R. Mécanique, Volume 342 (2014) no. 12, pp. 726-731 | DOI

[16] A. Nait-Ali Volumic method for the variational sum of a 2D discrete model, C. R. Mécanique, Volume 342 (2014) no. 12, pp. 726-731 | DOI

[17] A. Nait-Ali Nonlocal modeling of a randomly distributed and aligned long-fiber composite material, C. R. Mécanique, Volume 345 (2017) no. 3, pp. 192-207 | DOI

[18] C. H. Ng; M. J. Bermingham; M. S. Dargusch Eliminating porosity defects, promoting equiaxed grains and improving the mechanical properties of additively manufactured Ti-22V-4Al with super-transus hot isostatic pressing, Addit. Manuf., Volume 72 (2023) | DOI

[19] K. Pham; H. Amor; J.-J. Marigo; C. Maurini Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., Volume 20 (2011) no. 4, pp. 618-652 | DOI

[20] T.-H. Tran; V. Monchiet; G. Bonnet A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media, Int. J. Solids Struct., Volume 49 (2012) no. 5, pp. 783-792 | DOI

Cited by Sources:

Comments - Policy