This study aims to develop a numerical homogenization method that can be applied to a heterogeneous stratified medium. Traditional scale transition methods are inadequate in capturing the essential gradient properties of some materials. Therefore, the focus of this work is to construct a homogenized model that considers the material property gradient. To achieve this, a two-step homogenization scheme is proposed. Firstly, the 3D model is decomposed into multiple 2D heterogeneous layers, and the behavior of each layer is estimated using a micro-mechanical model such as the Hashin–Shtrikman bounds. Secondly, a variational sum method is used to rebuild the behavior of the 3D environment. Finally, the method is applied to homogenize a thin plate with a porosity gradient.
Cette étude vise à développer une méthode d’homogénéisation numérique qui peut être appliquée à un milieu stratifié hétérogène. Les méthodes traditionnelles de transition d’échelle sont inadéquates pour capturer les propriétés essentielles de gradient de certains matériaux. Par conséquent, l’objectif de ce travail est de construire un modèle homogénéisé qui prenne en compte le gradient des propriétés du matériau. Pour ce faire, un schéma d’homogénéisation en deux étapes est proposé. Tout d’abord, le modèle 3D est décomposé en plusieurs couches hétérogènes 2D et le comportement de chaque couche est estimé à l’aide d’un modèle micromécanique tel que les bornes de Hashin–Shtrikman. Ensuite, une méthode de somme variationnelle est utilisée pour reconstruire le comportement de l’environnement 3D. Enfin, la méthode est appliquée à l’homogénéisation d’une plaque mince avec un gradient de porosité.
Accepted:
Published online:
Azdine Nait-Ali 1; Sami Ben Elhaj Salah 1
@article{CRMECA_2024__352_G1_159_0, author = {Azdine Nait-Ali and Sami Ben Elhaj Salah}, title = {Variational modeling adapted to the medium with gradient properties}, journal = {Comptes Rendus. M\'ecanique}, pages = {159--168}, publisher = {Acad\'emie des sciences, Paris}, volume = {352}, year = {2024}, doi = {10.5802/crmeca.254}, language = {en}, }
Azdine Nait-Ali; Sami Ben Elhaj Salah. Variational modeling adapted to the medium with gradient properties. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 159-168. doi : 10.5802/crmeca.254. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.254/
[1] Scale effects induced by strain-gradient plasticity and interfacial resistance in periodic and randomly heterogeneous media, Mech. Mater., Volume 38 (2006), pp. 702-716 | DOI
[2] -Convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, 2002 | DOI | Zbl
[3] Experimental investigations on deformation characteristics in microstructure level during incremental forming of AA5052 sheet, J. Mater. Process. Technol., Volume 291 (2021) no. June 2020 | DOI
[4] Non-local modeling with asymptotic expansion homogenization of random materials, Mech. Mater., Volume 147 (2020) no. August 2020, 103459 | DOI
[5] Nonlocal polar elastic continua, Int. J. Eng. Sci., Volume 10 (1972) no. 1, pp. 1-16 | DOI | MR | Zbl
[6] Une approche variationnelle de la mécanique du défaut, ESAIM, Proc., Volume 6 (1999), pp. 57-74 | DOI | Zbl
[7] FoXTRoT: FFT-solver (2016) (https://sourcesup.renater.fr/www/foxtrot/html/)
[8] Homogenization of Stiff Inclusions Through Network Approximation, Netw. Heterog. Media, Volume 17 (2022) no. 2, pp. 163-202 | DOI | MR | Zbl
[9] Combination of in-situ SEM tensile test and FFT-based crystal elasticity simulations of Ti-6Al-4V for an improved description of the onset of plastic slip, Mech. Mater., Volume 109 (2017), pp. 1-10 | DOI
[10] A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963) no. 2, pp. 127-140 | DOI | MR | Zbl
[11] On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., Volume 4 (1968) no. 1, pp. 109-124 | DOI | Zbl
[12] Two dimensional deterministic model of a thin body with randomly distributed high conductivity fibers, AMRX, Appl. Math. Res. Express, Volume 1 (2012), pp. 122-156 | DOI | Zbl
[13] A FFT-Based Numerical Method for Computing the Mechanical Properties of Composites from Images of their Microstructures, IUTAM Symposium on Microstructure-Property Interactions in Composite Materials (R. Pyrz, ed.) (Solid Mechanics and Its Applications), Volume 37, Springer (1995), pp. 235-246 | DOI
[14] A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998), pp. 69-94 | DOI | MR | Zbl
[15] Volumic method for the variational sum of a 2D discrete model, C. R. Mécanique, Volume 342 (2014) no. 12, pp. 726-731 | DOI
[16] Volumic method for the variational sum of a 2D discrete model, C. R. Mécanique, Volume 342 (2014) no. 12, pp. 726-731 | DOI
[17] Nonlocal modeling of a randomly distributed and aligned long-fiber composite material, C. R. Mécanique, Volume 345 (2017) no. 3, pp. 192-207 | DOI
[18] Eliminating porosity defects, promoting equiaxed grains and improving the mechanical properties of additively manufactured Ti-22V-4Al with super-transus hot isostatic pressing, Addit. Manuf., Volume 72 (2023) | DOI
[19] Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., Volume 20 (2011) no. 4, pp. 618-652 | DOI
[20] A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media, Int. J. Solids Struct., Volume 49 (2012) no. 5, pp. 783-792 | DOI
Cited by Sources:
Comments - Policy