Comptes Rendus
Article de recherche
Blow-up to a p-Laplacian parabolic equation with a general nonlinear source
[effondrement d’une équation parabolique p-laplacienne avec une source non-linéaire générale]
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 71-80.

Une équation parabolique p-laplacienne avec un terme source non linéaire général est considérée. On montre que la solution peut exploser en temps fini pour une énergie initiale positive. De plus, sous certaines hypothèses appropriées concernant le terme source non linéaire, il est prouvé que la solution explose en temps fini pour une énergie initiale arbitrairement élevée. Ces résultats généralisent des résultats antérieurs.

A p-Laplacian parabolic equation with a general nonlinear source term is considered. It is shown that the solution may blow up in finite time at positive initial energy. Moreover, under some suitable assumptions about the nonlinear source term, the solution is proved to blow up in finite time at arbitrarily high initial energy. These results generalize the previous ones.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.248
Classification : 35K92, 35B44
Keywords: $p$-Laplacian parabolic equation, general nonlinear source term, blow-up
Mot clés : équation parabolique $p$-laplacienne, terme source non linéaire général, explosion

Hang Ding 1 ; Jun Zhou 1

1 School of Mathematics and Statistics, Southwest University, Chongqing, 400715, P.R.China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2024__352_G1_71_0,
     author = {Hang Ding and Jun Zhou},
     title = {Blow-up to a $p${-Laplacian} parabolic equation with a general nonlinear source},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {71--80},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.248},
     language = {en},
}
TY  - JOUR
AU  - Hang Ding
AU  - Jun Zhou
TI  - Blow-up to a $p$-Laplacian parabolic equation with a general nonlinear source
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 71
EP  - 80
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.248
LA  - en
ID  - CRMECA_2024__352_G1_71_0
ER  - 
%0 Journal Article
%A Hang Ding
%A Jun Zhou
%T Blow-up to a $p$-Laplacian parabolic equation with a general nonlinear source
%J Comptes Rendus. Mécanique
%D 2024
%P 71-80
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.248
%G en
%F CRMECA_2024__352_G1_71_0
Hang Ding; Jun Zhou. Blow-up to a $p$-Laplacian parabolic equation with a general nonlinear source. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 71-80. doi : 10.5802/crmeca.248. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.248/

[1] N. D. Alikakos; L. C. Evans Continuity of the gradient for weak solutions of a degenerate parabolic equation, J. Math. Pures Appl., Volume 62 (1983), pp. 253-268 | MR | Zbl

[2] S.-Y. Chung; M.-J. Choi A new condition for the concavity method of blow-up solutions to p-Laplacian parabolic equations, J. Differ. Equations, Volume 265 (2018) no. 12, pp. 6384-6399 | DOI | Zbl

[3] Y. Cao; C. Liu Initial boundary value problem for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity, Electron. J. Differ. Equ., Volume 2018 (2018), 116 | MR | Zbl

[4] A. Fujii; M. Ohta Asymptotic behavior of blowup solutions of a parabolic equation with the p-Laplacian, Publ. Res. Inst. Math. Sci., Ser. A, Volume 32 (1996) no. 3, pp. 503-515 | DOI | MR | Zbl

[5] C. N. Le; X. T. Le Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., Volume 151 (2017) no. 1, pp. 149-169 | DOI | MR | Zbl

[6] K.-A. Lee; A. Petrosyan; J. L. Vázquez Large-time geometric properties of solutions of the evolution p-Laplacian equation, J. Differ. Equations, Volume 229 (2006) no. 2, pp. 389-411 | DOI | MR | Zbl

[7] Y. Li; C. Xie Blow-up for p-Laplacian parabolic equations, Electron. J. Differ. Equ., Volume 2003 (2003), 20 | MR | Zbl

[8] Y. Tian; C. Mu Extinction and non-extinction for a p-Laplacian equation with nonlinear source, Nonlinear Anal., Theory Methods Appl., Volume 69 (2008) no. 8, pp. 2422-2431 | DOI | MR | Zbl

[9] M. Willem Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, 1996 | DOI | Zbl

[10] J. N. Zhao Existence and nonexistence of solutions for u t = div (|u| p-2 u)+f(u,u,x,t), J. Math. Anal. Appl., Volume 172 (1993) no. 1, pp. 130-146 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique