[effondrement d’une équation parabolique
Une équation parabolique
A
Révisé le :
Accepté le :
Publié le :
Keywords:
Mots-clés : équation parabolique
Hang Ding 1 ; Jun Zhou 1

@article{CRMECA_2024__352_G1_71_0, author = {Hang Ding and Jun Zhou}, title = {Blow-up to a $p${-Laplacian} parabolic equation with a general nonlinear source}, journal = {Comptes Rendus. M\'ecanique}, pages = {71--80}, publisher = {Acad\'emie des sciences, Paris}, volume = {352}, year = {2024}, doi = {10.5802/crmeca.248}, language = {en}, }
Hang Ding; Jun Zhou. Blow-up to a $p$-Laplacian parabolic equation with a general nonlinear source. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 71-80. doi : 10.5802/crmeca.248. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.248/
[1] Continuity of the gradient for weak solutions of a degenerate parabolic equation, J. Math. Pures Appl., Volume 62 (1983), pp. 253-268 | MR | Zbl
[2] A new condition for the concavity method of blow-up solutions to
[3] Initial boundary value problem for a mixed pseudo-parabolic
[4] Asymptotic behavior of blowup solutions of a parabolic equation with the
[5] Global solution and blow-up for a class of
[6] Large-time geometric properties of solutions of the evolution
[7] Blow-up for
[8] Extinction and non-extinction for a
[9] Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, 1996 | DOI | Zbl
[10] Existence and nonexistence of solutions for
Cité par Sources :
Commentaires - Politique