[effondrement d’une équation parabolique -laplacienne avec une source non-linéaire générale]
Une équation parabolique -laplacienne avec un terme source non linéaire général est considérée. On montre que la solution peut exploser en temps fini pour une énergie initiale positive. De plus, sous certaines hypothèses appropriées concernant le terme source non linéaire, il est prouvé que la solution explose en temps fini pour une énergie initiale arbitrairement élevée. Ces résultats généralisent des résultats antérieurs.
A -Laplacian parabolic equation with a general nonlinear source term is considered. It is shown that the solution may blow up in finite time at positive initial energy. Moreover, under some suitable assumptions about the nonlinear source term, the solution is proved to blow up in finite time at arbitrarily high initial energy. These results generalize the previous ones.
Révisé le :
Accepté le :
Publié le :
Keywords: $p$-Laplacian parabolic equation, general nonlinear source term, blow-up
Mot clés : équation parabolique $p$-laplacienne, terme source non linéaire général, explosion
Hang Ding 1 ; Jun Zhou 1
@article{CRMECA_2024__352_G1_71_0, author = {Hang Ding and Jun Zhou}, title = {Blow-up to a $p${-Laplacian} parabolic equation with a general nonlinear source}, journal = {Comptes Rendus. M\'ecanique}, pages = {71--80}, publisher = {Acad\'emie des sciences, Paris}, volume = {352}, year = {2024}, doi = {10.5802/crmeca.248}, language = {en}, }
Hang Ding; Jun Zhou. Blow-up to a $p$-Laplacian parabolic equation with a general nonlinear source. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 71-80. doi : 10.5802/crmeca.248. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.248/
[1] Continuity of the gradient for weak solutions of a degenerate parabolic equation, J. Math. Pures Appl., Volume 62 (1983), pp. 253-268 | MR | Zbl
[2] A new condition for the concavity method of blow-up solutions to -Laplacian parabolic equations, J. Differ. Equations, Volume 265 (2018) no. 12, pp. 6384-6399 | DOI | Zbl
[3] Initial boundary value problem for a mixed pseudo-parabolic -Laplacian type equation with logarithmic nonlinearity, Electron. J. Differ. Equ., Volume 2018 (2018), 116 | MR | Zbl
[4] Asymptotic behavior of blowup solutions of a parabolic equation with the -Laplacian, Publ. Res. Inst. Math. Sci., Ser. A, Volume 32 (1996) no. 3, pp. 503-515 | DOI | MR | Zbl
[5] Global solution and blow-up for a class of -Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., Volume 151 (2017) no. 1, pp. 149-169 | DOI | MR | Zbl
[6] Large-time geometric properties of solutions of the evolution -Laplacian equation, J. Differ. Equations, Volume 229 (2006) no. 2, pp. 389-411 | DOI | MR | Zbl
[7] Blow-up for -Laplacian parabolic equations, Electron. J. Differ. Equ., Volume 2003 (2003), 20 | MR | Zbl
[8] Extinction and non-extinction for a -Laplacian equation with nonlinear source, Nonlinear Anal., Theory Methods Appl., Volume 69 (2008) no. 8, pp. 2422-2431 | DOI | MR | Zbl
[9] Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, 1996 | DOI | Zbl
[10] Existence and nonexistence of solutions for , J. Math. Anal. Appl., Volume 172 (1993) no. 1, pp. 130-146 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique