Comptes Rendus
Article de recherche
Asymptotic modeling of viscoelastic thin plates and slender beams, a unifying approach
[Analyse asymptotique de plaques et de poutres viscoélastiques minces, une approche unitaire]
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 201-222.

Nous nous penchons sur la modélisation mathématique asymptotique de structures minces viscoélastiques dans le cadre de la théorie de Trotter de convergence de semi-groupes d’opérateurs agissant sur des espaces variables [1, 2]. Nous montrons que dans ce contexte, il est possible d’effectuer d’une manière unitaire l’analyse asymptotique des plaques et des poutres minces. Nous mettons en évidence divers modèles de comportements dynamiques de telles structures en contact bilatéral avec frottement de type Norton ou Tresca le long d’une partie de leur surface latérale avec un corps rigide.

A dimension reduction problem is tackled using Trotter’s theory of convergence of semi-groups of operators acting on variable spaces [1, 2]. We show that this framework makes it possible to perform the asymptotic analysis for both viscoelastic thin plates and slender beams in a unifying manner. Several models are provided for the dynamic behavior of such structures in bilateral contact with a rigid body on a part of their boundaries with Norton or Tresca friction.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.252
Keywords: Thin plates, slender beams, viscoelasticity of non-linear Kelvin-Voigt type, Norton or Tresca friction, transient problems, asymptotic analysis, dimension reduction, maximal-monotone operators, approximation of semi-groups in the sense of Trotter
Mot clés : Plaques minces, poutres élancées, viscoélasticité de type Kelvin-Voigt non linéaire, frottement de type Norton ou Tresca, problèmes d’évolution, analyse asymptotique, réduction de dimension, opérateurs maximaux-monotones, approximation de semi-groupes au sens de Trotter

Yotsawat Terapabkajornded 1, 2 ; Somsak Orankitjaroen 1, 3 ; Christian Licht 1, 2, 3 ; Thibaut Weller 2

1 Department of Mathematics, Faculty of Science, Mahidol University, Bangkok,Thailand
2 LMGC, Université de Montpellier, CNRS, Montpellier, France
3 Centre of Excellence in Mathematics, CHE, Bangkok, Thailand
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2024__352_G1_201_0,
     author = {Yotsawat Terapabkajornded and Somsak Orankitjaroen and Christian Licht and Thibaut Weller},
     title = {Asymptotic modeling of viscoelastic thin plates and slender beams, a unifying approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {201--222},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.252},
     language = {en},
}
TY  - JOUR
AU  - Yotsawat Terapabkajornded
AU  - Somsak Orankitjaroen
AU  - Christian Licht
AU  - Thibaut Weller
TI  - Asymptotic modeling of viscoelastic thin plates and slender beams, a unifying approach
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 201
EP  - 222
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.252
LA  - en
ID  - CRMECA_2024__352_G1_201_0
ER  - 
%0 Journal Article
%A Yotsawat Terapabkajornded
%A Somsak Orankitjaroen
%A Christian Licht
%A Thibaut Weller
%T Asymptotic modeling of viscoelastic thin plates and slender beams, a unifying approach
%J Comptes Rendus. Mécanique
%D 2024
%P 201-222
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.252
%G en
%F CRMECA_2024__352_G1_201_0
Yotsawat Terapabkajornded; Somsak Orankitjaroen; Christian Licht; Thibaut Weller. Asymptotic modeling of viscoelastic thin plates and slender beams, a unifying approach. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 201-222. doi : 10.5802/crmeca.252. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.252/

[1] G. Allaire Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518 | DOI | Zbl

[2] H. Brézis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, 5, North-Holland, 1973 | Zbl

[3] P. G. Ciarlet Mathematical Elasticity, Vol. II: Theory of Plates, Studies in Mathematics and its Applications, 27, North-Holland, 1997 | Zbl

[4] A. Gaudiello; R. Monneau; J. Mossino; F. Murat; A. Sili Junction of elastic plates and beams, ESAIM, Control Optim. Calc. Var., Volume 13 (2007) no. 3, pp. 419-457 | DOI | Numdam | Zbl

[5] O. Iosifescu; C. Licht Transient response of a thin linearly elastic plate with Norton or Tresca friction, Asymptotic Anal., Volume 128 (2022) no. 4, pp. 555-570 | DOI | Zbl

[6] O. Iosifescu; C. Licht; G. Michaille Nonlinear boundary conditions in Kirchhoff-Love plate theory, J. Elasticity, Volume 96 (2009) no. 1, pp. 57-79 | DOI | Zbl

[7] H. Le Dret Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero, Asymptotic Anal., Volume 10 (1995) no. 4, pp. 367-402 | DOI | Zbl

[8] C. Licht Thin linearly viscoelastic Kelvin–Voigt plates, C. R. Mécanique, Volume 341 (2013) no. 9-10, pp. 697-700 | DOI

[9] C. Licht; T. Weller Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in Physics of continuous media, Discrete Contin. Dyn. Syst., Ser. S, Volume 12 (2019) no. 6, pp. 1709-1741 | DOI | Zbl

[10] F. Murat; A. Sili Anisotropic, heterogeneous, linearized elasticity problems in thin cylinders, 2000 (Preprint ANLA no. 2013, Université de Toulon)

[11] F. Murat; A. Sili Comportement asymptotique des solutions du système de l’élasticité linéarisée anisotrope hétérogène dans des cylindres minces, C. R. Math., Volume 328 (1999) no. 2, pp. 179-184 | DOI | Zbl

[12] G. Nguetseng A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., Volume 20 (1989) no. 3, pp. 608-623 | DOI | Zbl

[13] Y. Terapabkajornded; S. Orankitjaroen; C. Licht Asymptotic model of linearly visco-elastic Kelvin–Voigt type plates via Trotter theory, Adv. Differ. Equ., Volume 2019 (2019), 186 | DOI | Zbl

[14] H. F. Trotter Approximation of semi-groups of operators, Pac. J. Math., Volume 28 (1958), pp. 897-919 | DOI | Zbl

[15] L. Trabucho; J. M. Viaño Mathematical modelling of rods, Finite element methods (part 2), numerical methods for solids (part 2) (Handbook of Numerical Analysis), Volume 4, North-Holland, 1996, pp. 487-973 | DOI | Zbl

Cité par Sources :

Commentaires - Politique