Comptes Rendus
Article de recherche
Finite strain formulation of the discrete equilibrium gap principle: application to direct parameter estimation from large full-fields measurements
[Formulation en transformation finie du principe d’écart d’équilibre discret : application à l’estimation directe de paramètres à partir de mesures de champs]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 259-308.

La méthode de l’écart d’équilibre (EGM) est une méthode directe d’identification de paramètres de modèles, c’est-à-dire qu’elle ne nécessite aucune résolution du modèle. Elle a été largement étudiée dans le contexte des petites déformations, mais n’a pas fait l’objet d’un examen approfondi pour les grandes déformations. Dans cet article, nous proposons une nouvelle formulation de l’EGM, valable pour les grandes déformations et applicable à la fois aux forces surfaciques et aux forces volumiques, lorsque des mesures plein champ sont disponibles. Notre approche est basée sur une formulation continue et une discrétisation consistante du principe de l’écart d’équilibre récemment proposées. En outre, nous avons développé un pipeline pour quantifier la robustesse de notre nouvelle formulation EGM au bruit, et nous avons comparé ses performances à d’autres méthodes d’estimation classiques, à savoir la méthode « Finite Element Method Updating » (FEMU) et la méthode des champs virtuels (VFM). Notre pipeline de quantification de la robustesse implique la génération de données synthétiques à partir d’un modèle de référence via deux méthodes potentielles : soit en ajoutant du bruit au déplacement de référence, soit en générant des images bruitées et en effectuant un suivi de mouvement avec le principe de l’écart d’équilibre utilisé comme régularisation mécanique. Alors que la qualité de l’estimation utilisant notre nouvelle formulation EGM est faible avec la première méthode de génération de données, elle s’améliore considérablement avec la seconde méthode. Étant donné que la deuxième méthode de génération de données synthétiques reproduit fidèlement les processus expérimentaux, l’EGM, lorsqu’elle est associée au suivi des mouvements avec régularisation de l’écart d’équilibre, fait preuve d’une robustesse raisonnable face au bruit. Il s’agit donc d’une option prometteuse pour l’estimation directe de paramètres à partir de mesures plein champ.

The Equilibrium Gap Method (EGM) is a direct model parameter identification method, i.e., that does not require any resolution of the model. It has been extensively studied in the context of small strains but not thoroughly investigated for large strains. In this article, we propose a novel formulation of the EGM, valid in large strains, and applicable to both boundary and body forces, when full-field measurements are available. Our formulation is based on a recently proposed continuous formulation and consistent discretization of the equilibrium gap principle. Additionally, we developed an estimation pipeline to quantify the robustness of our new EGM formulation to noise, and we compared its performance to other classical estimation methods, namely the Finite Element Model Updating (FEMU) method and the Virtual Fields Method (VFM). Our robustness quantification pipeline involves generating synthetic data from a reference model through two methods: by adding noise to the reference displacement, or by generating noisy images and performing motion tracking with the Equilibrium Gap principle used as mechanical regularization. While the quality of estimation using our new EGM formulation is poor with the first data generation method, it improves drastically with the second method. Since the second method of synthetic data generation closely mimics experimental processes, the EGM, when combined with motion tracking with Equilibrium Gap regularization, demonstrates reasonable noise robustness. Thus, it is a promising option for direct parameter estimation from full-field measurements.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.279
Keywords: Equilibrium Gap Method, Inverse problems, Large strains, Parameter identification, Uncertainty quantification
Mots-clés : Méthode de l’écart à l’équilibre, Problèmes inverses, Grandes transformations, Identification, Quantification d’incertitude

Alice Peyraut 1, 2 ; Martin Genet 1, 2

1 Solid Mechanics Laboratory, École Polytechnique/IPP/CNRS, France
2 MEDISIM Team, INRIA, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_259_0,
     author = {Alice Peyraut and Martin Genet},
     title = {Finite strain formulation of the discrete equilibrium gap principle: application to direct parameter estimation from large full-fields measurements},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {259--308},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.279},
     language = {en},
}
TY  - JOUR
AU  - Alice Peyraut
AU  - Martin Genet
TI  - Finite strain formulation of the discrete equilibrium gap principle: application to direct parameter estimation from large full-fields measurements
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 259
EP  - 308
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.279
LA  - en
ID  - CRMECA_2025__353_G1_259_0
ER  - 
%0 Journal Article
%A Alice Peyraut
%A Martin Genet
%T Finite strain formulation of the discrete equilibrium gap principle: application to direct parameter estimation from large full-fields measurements
%J Comptes Rendus. Mécanique
%D 2025
%P 259-308
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.279
%G en
%F CRMECA_2025__353_G1_259_0
Alice Peyraut; Martin Genet. Finite strain formulation of the discrete equilibrium gap principle: application to direct parameter estimation from large full-fields measurements. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 259-308. doi : 10.5802/crmeca.279. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.279/

[1] S. Avril; M. Bonnet; A.-S. Bretelle et al. Overview of identification methods of mechanical parameters based on full-field measurements, Exp. Mech., Volume 48 (2008), pp. 381-402 | DOI

[2] M. S. Alnaes; J. Blechta; J. Hake et al. The FEniCS Project Version 1.5, Arch. Numer. Softw., Volume 3 (2015) no. 100, pp. 9-23 | DOI

[3] M. B. Azzouna; P. Feissel; P. Villon Robust identification of elastic properties using the modified constitutive relation error, Comput. Methods Appl. Mech. Eng., Volume 295 (2015), pp. 196-218 | DOI

[4] S. Avril; M. Grediac; F. Pierron Sensitivity of the virtual fields method to noisy data, Comput. Mech., Volume 34 (2004) no. 6, pp. 439-452 (ISSN: 0178-7675, 1432-0924) | DOI

[5] S. Avril; F. Pierron; Y. Pannier; R. Rotinat Stress reconstruction and constitutive parameter identification in plane-stress elasto-plastic problems using surface measurements of deformation fields, Exp. Mech., Volume 48 (2008) no. 4, pp. 403-419 (ISSN: 0014-4851, 1741-2765) | DOI

[6] M. Bonnet; A. Constantinescu Inverse problems in elasticity, Inverse Probl., Volume 21 (2005) no. 2, R1 | DOI

[7] H. D. Bui; A. Constantinescu; H. Maigre Numerical identification of linear cracks in 2D elastodynamics using the instantaneous reciprocity gap, Inverse Probl., Volume 20 (2004) no. 4, 993 | DOI

[8] J. Boddapati; M. Flaschel; S. Kumar; L. De Lorenzis; C. Daraio Single-test evaluation of directional elastic properties of anisotropic structured materials, J. Mech. Phys. Solids, Volume 181 (2023), 105471 | DOI

[9] E. Berberoğlu; C. Stoeck; S. Kozerke; M. Genet Quantification of left ventricular strain and torsion by joint analysis of 3D tagging and cine MR images, Med. Image Anal., Volume 82 (2022), 102598 | DOI

[10] E. Berberoğlu; C. Stoeck; P. Moireau; S. Kozerke; M. Genet Validation of finite element image registration-based cardiac strain estimation from magnetic resonance images, PAMM, Volume 19 (2019) no. 1, e201900418 | DOI

[11] E. Berberoğlu; C. Stoeck; P. Moireau; S. Kozerke; M. Genet In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI, PLoS One, Volume 16 (2021) no. 11, e0258965 | DOI

[12] J. D. Collins; F. Hart; T. Hasselman; B. Kennedy Statistical identification of structures, AIAA J., Volume 12 (1974) no. 2, pp. 185-190 | DOI

[13] D. Claire; F. Hild; S. Roux A finite element formulation to identify damage fields: the equilibrium gap method, Int. J. Numer. Methods Eng., Volume 61 (2004) no. 2, pp. 189-208 | DOI

[14] L. Crouzeix; J.-N. Périé; F. Collombet; B. Douchin An orthotropic variant of the equilibrium gap method applied to the analysis of a biaxial test on a composite material, Compos. A: Appl. Sci. Manuf., Volume 40 (2009) no. 11, pp. 1732-1740 | DOI

[15] J. Deng; X. Guo; Y. Mei; S. Avril FEniCS implementation of the Virtual Fields Method (VFM) for nonhomogeneous hyperelastic identification, Adv. Eng. Softw., Volume 175 (2023), 103343 (ISSN: 09659978) | DOI

[16] P. Feissel; O. Allix Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case, Comput. Methods Appl. Mech. Eng., Volume 196 (2007) no. 13-16, pp. 1968-1983 | DOI

[17] M. Genet Finite strain formulation of the discrete equilibrium gap principle: application to mechanically consistent regularization for large motion tracking, C. R. Méc., Volume 351 (2023) no. G2, pp. 429-458 (ISSN: 1873-7234) | DOI

[18] M. Genet dolfin_warp, 2023 (Version 2023.06.06.post1. https://doi.org/10.5281/zenodo.8010786)

[19] M. Grediac; F. Pierron; S. Avril; E. Toussaint The virtual fields method for extracting constitutive parameters from full-field measurements: a review, Strain, Volume 42 (2006) no. 4, pp. 233-253 (ISSN: 0039-2103, 1475-1305) | DOI

[20] M. Genet; C. Patte; M. Manoochehrtayebi; A. Peyraut dolfin_mech, 2024 (Version 2024.01.19) | DOI

[21] M. Genet; C. Stoeck; C. Von Deuster; L. C. Lee; S. Kozerke Equilibrated warping: Finite element image registration with finite strain equilibrium gap regularization, Med. Image Anal., Volume 50 (2018), pp. 1-22 (ISSN: 13618415) | DOI

[22] K. T. Kavanagh; R. W. Clough Finite element applications in the characterization of elastic solids, Int. J. Solids Struct., Volume 7 (1971) no. 1, pp. 11-23 | DOI

[23] C. Laville; C. Fetita; T. Gille; P. Brillet; H. Nunes; J.-F. Bernaudin; M. Genet Comparison of optimization parametrizations for regional lung compliance estimation using personalized pulmonary poromechanical modeling, Biomech. Model. Mechanobiol., Volume 22 (2023) no. 5, pp. 1541-1554 | DOI

[24] L. Lee; M. Genet Validation of equilibrated warping—image registration with mechanical regularization—on 3D ultrasound images, Functional Imaging and Modeling of the Heart: 10th International Conference, FIMH 2019, Bordeaux, France, June 6–8, 2019, Proceedings 10, Springer, Cham, 2019, pp. 334-341 | DOI

[25] H. Leclerc; J.-N. Périé; S. Roux; F. Hild Voxel-scale digital volume correlation, Exp. Mech., Volume 51 (2011), pp. 479-490 | DOI

[26] G. Louedec; F. Pierron; M. A. Sutton; A. P. Reynolds Identification of the local elasto-plastic behavior of FSW welds using the virtual fields method, Exp. Mech., Volume 53 (2013) no. 5, pp. 849-859 (ISSN: 0014-4851, 1741-2765) | DOI

[27] P. Ladevèze; M. Reynier; N. Maia Error on the constitutive relation in dynamics, Inverse Probl. Eng. (1994), pp. 251-256

[28] A. Logg; G. N. Wells DOLFIN: automated finite element computing, ACM Trans. Math. Softw., Volume 37 (2010) no. 2, pp. 1-28 | DOI

[29] A. Marek; F. M. Davis; F. Pierron Sensitivity-based virtual fields for the non-linear virtual fields method, Comput. Mech., Volume 60 (2017), pp. 409-431 | DOI

[30] Y. Mei VFM-for-hyperelastic-materials, 2022 https://github.com/meiyue1989/VFM-for-hyperelastic-materials

[31] A. Mendoza; J. Neggers; F. Hild; S. Roux Complete mechanical regularization applied to digital image and volume correlation, Comput. Methods Appl. Mech. Eng., Volume 355 (2019), pp. 27-43 | DOI

[32] C. Patte Personalized pulmonary mechanics: modeling, estimation and application to pulmonary fibrosis, PhD thesis, Institut Polytechnique de Paris (2020)

[33] C. Patte; P.-Y. Brillet; C. Fetita; J.-F. Bernaudin; T. Gille; H. Nunes; D. Chapelle; M. Genet Estimation of regional pulmonary compliance in idiopathic pulmonary fibrosis based on personalized lung poromechanical modeling, J. Biomech. Eng., Volume 144 (2022) no. 9, 091008 | DOI

[34] E. Pagnacco; A.-S. Caro-Bretelle; P. Ienny Parameter identification from mechanical field measurements using finite element model updating strategies, Full-Field Measurements and Identification in Solid Mechanics, John Wiley & Sons, 2013, pp. 247-274

[35] A. Peyraut; M. Genet dolfin_estim, 2024 https://gitlab.inria.fr/apeyraut/dolfin_estim

[36] F. Pierron Material Testing 2.0: a brief review, Strain, Volume 59 (2023) no. 3, e12434 | DOI

[37] S. Roux; F. Hild Digital image mechanical identification (DIMI), Exp. Mech., Volume 48 (2008) no. 4, pp. 495-508 | DOI

[38] S. Roux; F. Hild Optimal procedure for the identification of constitutive parameters from experimentally measured displacement fields, Int. J. Solids Struct., Volume 184 (2020), pp. 14-23 (ISSN: 00207683) | DOI

[39] M. Rossi; P. Lava; F. Pierron; D. Debruyne; M. Sasso Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM, Strain, Volume 51 (2015) no. 3, pp. 206-222 (ISSN: 0039-2103, 1475-1305) | DOI

[40] M. Rossi; F. Pierron; M. Štamborská Application of the virtual fields method to large strain anisotropic plasticity, Int. J. Solids Struct., Volume 97-98 (2016), pp. 322-335 (ISSN: 00207683) | DOI

[41] W. Schroeder; K. Martin; B. Lorensen The Visualization Toolkit, Kitware, New York, 2006 (ISSN: 978-1-930934-19-1)

[42] M. A. Sutton; J. H. Yan; S. Avril; F. Pierron; S. M. Adeeb Identification of heterogeneous constitutive parameters in a welded specimen: uniform stress and virtual fields methods for material property estimation, Exp. Mech., Volume 48 (2008) no. 4, pp. 451-464 (ISSN: 0014-4851, 1741-2765) | DOI

[43] Z. Tomivcevć; F. Hild; S. Roux Mechanics-aided digital image correlation, J. Strain Anal. Eng. Design, Volume 48 (2013) no. 5, pp. 330-343 | DOI

[44] A. Wittek; W. Derwich; K. Karatolios; C. P. Fritzen; S. Vogt; T. Schmitz-Rixen; C. Blase A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4D ultrasound strain imaging, J. Mech. Behav. Biomed. Mater., Volume 58 (2016), pp. 122-138 | DOI

[45] K. Škardová; M. Rambausek; R. Chabiniok; M. Genet Mechanical and imaging models-based image registration, VipIMAGE 2019: Proceedings of the VII ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, October 16–18, 2019, Porto, Portugal, Springer, Cham, 2019, pp. 77-85 | DOI

Cité par Sources :

Commentaires - Politique