[Quelques aspects des méthodes spectrales et microlocales en relativité générale mathématique]
Nous passons en revue quelques-unes des idées importantes de l’analyse spectrale et microlocale qui ont été appliquées à des problèmes de relativité générale mathématique au cours des dernières décennies.
We review some of the important ideas of spectral and microlocal analysis which have been applied to problems in Mathematical General Relativity over the last decades.
Accepté le :
Publié le :
Mots-clés : Théorie spectrale, Analyse microlocale, Relativité générale
Dietrich Häfner 1
@article{CRMECA_2025__353_G1_1_0, author = {Dietrich H\"afner}, title = {Some aspects of spectral and microlocal methods in {Mathematical} {General} {Relativity}}, journal = {Comptes Rendus. M\'ecanique}, pages = {1--28}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.273}, language = {en}, }
Dietrich Häfner. Some aspects of spectral and microlocal methods in Mathematical General Relativity. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1-28. doi : 10.5802/crmeca.273. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.273/
[1] Fourier integral operators. II, Acta Math., Volume 128 (1972), pp. 183-269 | DOI
[2] Micro-local approach to the Hadamard condition in quantum field theory on curved space-time, Commun. Math. Phys., Volume 179 (1996) no. 3, pp. 529-553 | DOI
[3] Construction of Hadamard states by pseudo-differential calculus, Commun. Math. Phys., Volume 325 (2014) no. 2, pp. 713-755 | DOI
[4] Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric. I, Ann. Phys., Volume 175 (1987), pp. 366-426 | DOI
[5] Asymptotic completeness for the Klein–Gordon equation on the Schwarzschild metric, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 61 (1994) no. 4, pp. 411-441
[6] The Hawking effect, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 70 (1999) no. 1, pp. 41-99
[7] Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime, Adv. Theor. Math. Phys., Volume 15 (2011) no. 2, pp. 355-447 | DOI
[8] Creation of Fermions by Rotating Charged Black Holes, Mém. Soc. Math. Fr., Nouv. Sér., 117, Société Mathématique de France (SMF), Paris, 2009 | DOI
[9] The Unruh state for massless fermions on Kerr spacetime and its Hadamard property, Ann. Sci. Éc. Norm. Supér. (4), Volume 56 (2023) no. 1, pp. 127-196 | DOI
[10] Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys., Volume 16 (2004) no. 1, pp. 29-123 | DOI
[11] Construction of the Unruh state for a real scalar field on the Kerr–de Sitter spacetime, Ann. Henri Poincaré, Volume 24 (2023) no. 7, pp. 2401-2442 | DOI
[12] On the scattering theory for a Klein–Gordon equation in the Kerr metric, Diss. Math., Volume 421 (2003), pp. 1-102 (French) | DOI
[13] A scattering theory for the wave equation on Kerr black hole exteriors, Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018) no. 2, pp. 371-486
[14] Asymptotic completeness for superradiant Klein–Gordon equations and applications to the de Sitter–Kerr metric, J. Eur. Math. Soc. (JEMS), Volume 19 (2017) no. 8, pp. 2371-2444 | DOI
[15] Analysis of linear waves near the Cauchy horizon of cosmological black holes, J. Math. Phys., Volume 58 (2017) no. 8, 081509 | DOI
[16] The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, Princeton University Press, Princeton, NJ, 1993
[17] Resonances of a Schwarzschild black hole, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 59 (1993) no. 1, pp. 3-68 (French)
[18] Distribution of resonances for spherical black holes, Math. Res. Lett., Volume 4 (1997) no. 1, pp. 103-121 | DOI
[19] Decay and non-decay of the local energy for the wave equation on the De Sitter–Schwarzschild metric, Commun. Math. Phys., Volume 282 (2008) no. 3, pp. 697-719 | DOI
[20] Asymptotics of solutions of the wave equation on de Sitter–Schwarzschild space, Commun. Partial Differ. Equ., Volume 39 (2014) no. 3, pp. 512-529 | DOI
[21] Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole, Commun. Math. Phys., Volume 306 (2011) no. 1, pp. 119-163 | DOI
[22] Exponential energy decay for Kerr–de Sitter black holes beyond event horizons, Math. Res. Lett., Volume 18 (2011) no. 5, pp. 1023-1035 | DOI
[23] Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces (with an appendix by Semyon Dyatlov), Invent. Math., Volume 194 (2013) no. 2, pp. 381-513 | DOI
[24] Quantum fields from global propagators on asymptotically Minkowski and extended de Sitter spacetimes, Ann. Henri Poincaré, Volume 19 (2018) no. 5, pp. 1529-1586 | DOI
[25] Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré, Volume 12 (2011) no. 7, pp. 1349-1385 | DOI
[26] Spectral gaps for normally hyperbolic trapping, Ann. Inst. Fourier, Volume 66 (2016) no. 1, pp. 55-82 | DOI
[27] Normally hyperbolic trapping on asymptotically stationary spacetimes, Probab. Math. Phys., Volume 2 (2021) no. 1, pp. 71-126 | DOI
[28] The global non-linear stability of the Kerr–de Sitter family of black holes, Acta Math., Volume 220 (2018) no. 1, pp. 1-206 | DOI
[29] Stationarity and Fredholm theory in subextremal Kerr–de Sitter spacetimes, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 20 (2024), 052
[30] Mode stability and shallow quasinormal modes of Kerr–de Sitter black holes away from extremality, J. Eur. Math. Soc. (2024) (Online first) | DOI
[31] Low frequency resolvent estimates for long range perturbations of the Euclide Laplace, Math. Res. Lett., Volume 17 (2010) no. 2, pp. 301-306 | DOI
[32] Local energy decay for several evolution equations on asymptotically Euclidean manifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 45 (2012) no. 2, pp. 311-335
[33] Limiting absorption principle on Riemannian scattering (asymptotically conic) spaces, a Lagrangian approach, Commun. Partial Differ. Equ., Volume 46 (2021) no. 5, pp. 780-822 | DOI
[34] Resolvent near zero energy on Riemannian scattering (asymptotically conic) spaces, a Lagrangian approach, Commun. Partial Differ. Equ., Volume 46 (2021) no. 5, pp. 823-863 | DOI
[35] Asymptotics of radiation fields in asymptotically Minkowski space, Am. J. Math., Volume 137 (2015) no. 5, pp. 1293-1364 | DOI
[36] Asymptotics of scalar waves on long-range asymptotically Minkowski spaces, Adv. Math., Volume 328 (2018), pp. 160-216 | DOI
[37] Quasinormal modes on Kerr spacetimes, preprint, 2024 | arXiv
[38] Quasinormal modes for the Kerr black hole, preprint, 2024 | arXiv
[39] Linear stability of slowly rotating Kerr black holes, Invent. Math., Volume 223 (2021) no. 3, pp. 1227-1406 | DOI
[40] Disk accretion onto a black hole. 2. Evolution of the hole, Astrophys. J., Volume 191 (1974), pp. 507-520
[41] Asymptotics of linear waves and resonances with applications to black holes, Commun. Math. Phys., Volume 335 (2015) no. 3, pp. 1445-1485 | DOI
[42] Mode stability of the Kerr black hole, J. Math. Phys., Volume 30 (1989) no. 6, pp. 1301-1305 | DOI
[43] Mode analysis for the linearized Einstein equations on the Kerr metric : the large case, J. Eur. Math. Soc. (2024) (Online first) | DOI
[44] Optimal decay for solutions of the Teukolsky equation on the Kerr metric for the full subextremal range |a| M, preprint, 2023 | arXiv
[45] A sharp version of Price’s law for wave decay on asymptotically flat spacetimes, Commun. Math. Phys., Volume 389 (2022) no. 1, pp. 491-542 | DOI
[46] Kerr stability for small angular momentum, Pure Appl. Math. Q., Volume 19 (2023) no. 3, pp. 791-1678 | DOI
[47] Construction of GCM spheres in perturbations of Kerr, Ann. PDE, Volume 8 (2022) no. 2, 17 | DOI
[48] Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr, Ann. PDE, Volume 8 (2022) no. 2, 18 | DOI
[49] Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes, preprint, 2022 | arXiv
[50] Construction of GCM hypersurfaces in perturbations of Kerr, Ann. PDE, Volume 9 (2023) no. 1, 11 | DOI
[51] The non-linear stability of the Schwarzschild family of black holes, preprint, 2021 | arXiv
[52] Quasinormal modes for Schwarzschild-AdS black holes: exponential convergence to the real axis, Commun. Math. Phys., Volume 330 (2014) no. 2, pp. 771-799 | DOI
[53] Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes, Anal. PDE, Volume 7 (2014) no. 5, pp. 1057-1090 | DOI
[54] The interior of charged black holes and the problem of uniqueness in general relativity, Commun. Pure Appl. Math., Volume 58 (2005) no. 4, pp. 445-504 | DOI
[55] Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data. I: The interior of the black hole region, Ann. Math. (2), Volume 190 (2019) no. 1, pp. 1-111 | DOI
[56] Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data II: the exterior of the Black Hole region, Ann. PDE, Volume 5 (2019) no. 1, 6 | DOI
[57] Quasinormal modes and strong cosmic censorship, preprint, 2017 | arXiv
[58] Quantum instability of the Cauchy horizon in Reissner–Nordström–deSitter spacetime, Class. Quantum Gravity, Volume 37 (2020) no. 11, 115009 | DOI
[59] A scattering theory for linear waves on the interior of Reissner–Nordström black holes, Ann. Henri Poincaré, Volume 20 (2019) no. 5, pp. 1583-1650 | DOI
[60] On crossing the Cauchy horizon of a Reissner–Nordström black-hole, Proc. R. Soc. Lond., Ser. A, Volume 384 (1982) no. 1787, pp. 301-315 | DOI
[61] Scattering theory for Dirac fields inside a Reissner–Nordström-type black hole, J. Math. Phys., Volume 62 (2021) no. 8, 081503 | DOI
[62] Scattering of Dirac fields in the interior of Kerr–Newman(-Anti)–de Sitter black holes, preprint, 2023 | arXiv
[63] Linear waves on asymptotically flat spacetimes. I, preprint, 2023 | arXiv
[64] Microlocal analysis near null infinity in asymptotically flat spacetimes, preprint, 2023 | arXiv
[65] Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-226 | DOI
[66] Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer, Cham, 1977
[67] Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 (French) | DOI
[68] Correction to: “Linear stability of slowly rotating Kerr black holes”, Invent. Math., Volume 236 (2024) no. 1, pp. 477-481 | DOI
[69] Stability for linearized gravity on the Kerr spacetime, preprint, 2019 | arXiv
[70] The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math., Volume 222 (2019) no. 1, pp. 1-214 | DOI
[71] Linear stability of Schwarzschild spacetime: decay of metric coefficients, J. Differ. Geom., Volume 116 (2020) no. 3, pp. 481-541 | DOI
[72] Geometric background for the Teukolsky equation revisited, Rev. Math. Phys., Volume 36 (2024) no. 3, 2430003 | DOI
[73] Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range |a| M: frequency space analysis, preprint, 2023 | arXiv
[74] Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range |a| M: physical space analysis, preprint, 2023 | arXiv
[75] Sharp decay for Teukolsky equation in Kerr spacetimes, Commun. Math. Phys., Volume 401 (2023) no. 1, pp. 333-434 | DOI
[76] The Analysis of Linear Partial Differential Operators. III: Pseudo-Differential Operators, Grundlehren der mathematischen Wissenschaften, 274, Springer, Cham, 1985
[77] Semiclassical Analysis, Graduate Studies in Mathematics, 138, American Mathematical Society (AMS), Providence, RI, 2012
[78] Microlocal analysis and evolution equations: lecture notes from 2008 CMI/ETH summer school April 25, 2013, Evolution Equations. Proceedings of the Clay Mathematics Institute Summer School, ETH, Zürich, Switzerland, June 23–July 18, 2008 (D. Ellwood et al., eds.) (Clay Mathematics Proceedings), Volume 17, American Mathematical Society (AMS), Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2013, pp. 1-72
[79] Introduction to microlocal analysis https://people.math.ethz.ch/~hintzp/notes/micro.pdf (Lecture Notes 2023)
[80] Global analysis and nonlinear wave equations on cosmological spacetimes, PhD thesis, Stanford university (2015) https://people.math.ethz.ch/~hintzp/thesis-augmented.pdf
[81] Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, in Spectral and scattering theory, Proceedings of the 30th Taniguchi international workshop, held at Sanda, Hyogo, Japan, Marcel Dekker, Basel, 1994, pp. 85-130
[82] Resonances for asymptotically hyperbolic manifolds: Vasy’s method revisited, J. Spectr. Theory, Volume 6 (2016) no. 4, pp. 1087-1114 | DOI
[83] Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 3, pp. 543-577 http://hdl.handle.net/1721.1/115500
[84] Exponentially growing finite energy solutions for the Klein–Gordon equation on sub-extremal Kerr spacetimes, Commun. Math. Phys., Volume 329 (2014) no. 3, pp. 859-891 | DOI
[85] Existence of exponentially growing finite energy solutions for the charged Klein–Gordon equation on the de Sitter–Kerr–Newman metric, J. Hyperbolic Differ. Equ., Volume 18 (2021) no. 2, pp. 293-310 | DOI
Cité par Sources :
Commentaires - Politique